Poloidal Flow Measurement with Charge-eXchange Recombination Spectroscopy in Heliotron J

Tomotaka Harada1, Shinji Kobayashi2, Xiangxun Lu1, Tohru Mizuuchi2, Fumimichi Sano2, et al.

1京都大学エネルギ科学研究科 〒611-0011 京都府宇治市五ヶ庄
2京都大学エネルギー理工学研究所 〒611-0011 京都府宇治市五ヶ庄
3核融合科学研究所 〒509-5292 岐阜県土岐市下石町 322-6

A Charge-eXchange Recombination Spectroscopy (CXRS) system is newly installed to measure the radial and temporal profile of poloidal flow velocity in Heliotron J. In this system, two tangential neutral beams for plasma heating are used as the diagnostic beam and the spatial resolution is ±0.01Δr/a±0.17 for the measurement area of 0.31<r/a<0.95. An Echell monochromator is fabricated to obtain high spectral resolution. This system is applied to NBI plasmas to obtain the time evolution of the poloidal flow velocity profile.

1. Introduction

The radial structure of toroidal/poloidal flow and the radial electric field have been discussed for the confinement of high temperature plasmas, since poloidal flow velocity and radial electric field shear were observed and have been recognized to contribute to an improvement of plasma confinement in the so-called high confinement mode (H-mode) plasmas [1,2]. A Charge-eXchange Recombination Spectroscopy (CXRS) method has been utilized for the measurements of the radial profile of the impurity ion temperature and flow velocity in high temperature fusion plasmas [3]. In Heliotron J, a CXRS system has been developed to measure the ion temperature and the parallel flow velocity in the range of 0.07<r/a<0.94 with the spatial resolution of Δr/a=0.05 [4,5], where r is the averaged minor radius, and the r at the plasma boundary is r=a. We have recently installed a new objective optical system to measure the poloidal flow velocity. We present the results of the radial profile and the time evolution of the ion poloidal flow velocity.

2. Charge-eXchange Recombination Spectroscopy system in Heliotron J

Figure 1 shows the poloidal CXRS system in Heliotron J, a helical-axis heliotron device with an L/M=1/4 helical coil (L: pole number, M: helical pitch of the helical coil). Two Neutral Beam Injection (NBI) lines (BL1: ctr-injection, BL2: co-injection, here the co-direction is defined as the direction of plasma current, which increases the rotational transform) with positive ion sources are used as diagnostic beams for CXRS. This system measures CVI line (n=7–8, 529.05 nm). We install two sets of optical fiber (beam and background region) to remove the background emission, and they are adopted to be symmetrical against poloidal direction. Each optical set has 32 sightlines, where the optical fibers’ numerical aperture (NA) is 0.2 and the core diameter is 0.8 mm. The high spectral resolution is required for the poloidal CXRS because poloidal flow velocities are expected to be smaller than those of parallel flow. Therefore, the plasma emission is led to an Echell monochromator whose F number is 2.9, focus length is 200 mm and grating is 31.6 grooves/mm. A CCD camera (ANDOR DV-887, 512×512 pixels, 16×16 μm, Maximum scanning frequency: 400 Hz), is mounted on the Echell monochromator. Additionally, the measurable wavelength range is too small to determine the accurate λ0 (529.05 nm) position on the CCD image with single-element lamps, as a result, we prepared a calibration system using two monochromators.

The measurement location and the spatial resolution are evaluated from the CXR emissivity calculation. The calculation method for the measurement location and the spatial resolution of
the parallel CXRS system is reported in Ref. [4,5], 
which is also used for the poloidal CXRS system. 
The measurement area is 0.31<ra<0.95 with BL1 
for the standard magnetic configuration and 
the spatial resolution is ±0.01<Δr/a<±0.17.

3. Experimental results

Figures 2(a) and 2(b) show the time evolutions of 
line averaged electron density and stored energy in 
the NBI plasmas (ct-injection, P_{NBI}=400 kW) with 
and without the Electron Cyclotron resonance Heating 
(ECH) (P_{ECH}=331 kW, N/e=0.4), respectively. The time evolutions and the radial 
profiles of poloidal flow are shown in Figs. 2(c) and 
2(d), respectively. In the peripheral region r/a>0.6, 
the intensity of the CXR emission are too low to 
estimate the poloidal flow velocity. In this 
experiment, the time resolutions of the poloidal and 
the parallel CXRS are 10 ms and 5 ms, respectively. 
As shown in Fig. 2(c) and 2(d), the direction of the 
poloidal flow near the core is changed depending on 
the ECH. In the case that the 2nd ECH is not 
applied, the poloidal flow is in the electron 
diamagnetic direction whereas that is in the ion 
diamagnetic direction when the 2nd ECH is applied. 
As seen in Figs. 2(e)-2(g), the electron and ion 
temperature is 0.2 keV and 120 eV and the radial 
profile of electron density has a peaked shape when 
the 2nd ECH is not applied, respectively. On the 
other hand, when the 2nd ECH is applied, the 
electron temperature at the plasma core increases up 
to 1.5 keV, the electron density profile becomes 
hollow and a slightly decrease in ion temperature is 
observed.

4. Summary

The poloidal CXRS system is newly designed 
and installed in Heliotron J. The time evolutions of 
the poloidal flow velocity profiles are measured 
with this system in the NBI plasmas with and 
without ECH. The change in the direction of the 
poloidal flow due to ECH is observed. This 
experimental observation indicates that the radial 
electric field is changed its sign from negative (ion 
root) to positive (electron root). Neo classical 
transport analysis is required to understand these 
phenomena.

Acknowledgments

This work was supported by NIFS Collaboration 
Research Program (NIFS10KUHK030, 
NIFS12KUHL052 and NIFS14KUHL065).

References

3288.
1402019.