Wave Propagation Analysis of Ion Cyclotron Range of Frequency heating in Heliotron J

ヘリオトロンJにおけるイオンサイクロトロン周波数帯加熱の波動伝播解析

<u>Koichiro Murakami¹</u>, Hiroyuki Okada², Yosuke Jinno¹, Tohru Mizuuchi², Kazunobu Nagasaki², Yuji Nakamura¹, Shinichiro Kado², Takashi Minami², Satoshi Yamamoto², Shigeru Konoshima², Shinji Kobayashi², Shinsuke Ohshima², Yusuke Nakayama¹, Soshi Kitani¹, Kosuke Nishikawa¹, Zhongyuan Hong¹, Ryo Tsukasaki¹, Ryosuke Isono³ and Fumimichi Sano²

<u>村上弘一郎</u>¹,岡田浩之²,神野洋介¹,水内亨²,長崎百伸²,中村祐司¹,門信一郎²,南貴司², 山本聡²,木島滋²,小林進二²,大島慎介²,中山裕介¹,木谷壮志¹,西川幸佑¹,洪重遠¹,塚崎僚¹, 磯野良輔³,佐野史道²

¹Graduate School of Energy Science, Kyoto University, Gokasho, Uji 611-0011, Japan ²Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan ³Faculty of Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan ¹京都大学エネルギー科学研究科 〒611-0011 宇治市五ヶ庄 ²京都大学エネルギー理工学研究所 〒611-0011 宇治市五ヶ庄 ³京都大学工学部 〒606-8501 京都市左京区吉田本町

In Heliotron J, ion cyclotron range of frequency (ICRF) heating has been performed to study fast ion generation and confinement. Understanding the property of wave propagation is necessary to realize high efficiency heating using ICRF waves. The dependence of the density, minority ion ratio and magnetic configuration on the wave propagation is investigated using three-dimensional wave analysis code TASK/WM. It is found that the radial wave length decrease as the minority ion ratio increases for f_{RF} = 19.0 MHz. For f_{RF} = 23.2 MHz, the wave length does not change, as the minority ion ratio increases. The wave propagation is calculated in the fully three-dimensional magnetic field of Heliotron J by using TASK/WM code for heating analysis.

1. Introduction

Ion cyclotron range of frequency (ICRF) heating is one of the major heating methods in nuclear fusion. In Heliotron J, ICRF heating experiments have been conducted to study fast ion generation and confinement, using minority ion heating scheme where the main ion is deuterium and the minority ion is hydrogen. Understanding the property of wave propagation and wave absorption is necessary to realize high efficiency heating by ICRF heating. The main purpose of this study is to clarify the dependence of density, minority ion ratio magnetic configuration on the and wave propagation and the wave absorption in ICRF heating. Three-dimensional wave analysis code TASK/WM is used to calculate and analyze radio frequency wave in Heliotron J plasmas, which are produced in the fully three dimensional magnetic field. Other study that uses TASK/WM code is the simulation study of ICRF wave propagation in JT60U plasma and LHD plasma [1].

2. Three-dimensional Wave Analysis Code TASK/WM

TASK/WM code solves Maxwell's equation for the electric field *E* in nonorthogonal coordinates.

$$\nabla \times \nabla \times \boldsymbol{E} = \frac{\omega^2}{c^2} \stackrel{\leftrightarrow}{\varepsilon} \boldsymbol{E} + i\omega\mu_0 \boldsymbol{j}_{ext}$$
(1)

In Eq(1), ε is the dielectric tensor in nonorthogonal coordinates and j_{ext} is the surface current density on the antenna surface [1,2]. Figure 1 shows the $\operatorname{Re}E_{+}$ (the real part of left-circularly polarized component of electric field) in the Heliotron J plasma, which is calculated using TASK/WM. The input parameters are $f_{RF} = 19.0$ MHz, $j_{ext} = 1.0 \text{ Am}^{-1}$, antenna minor radius $R_{ANT} = 0.20$ m, plasma major radius $R_0 = 1.2$ m , plasma minor radius a = 0.18 m, the magnetic field at magnetic axis $B_0 = 1.25$ T, the density at magnetic axis $n_0 =$ 1.0×10^{-19} m⁻³, and the minority ion ratio $r_{min} = 10\%$. For the calculation, the cold plasma model is applied. The input frequency f_{in} was assumed as Eq (2) to include the damping.

$$f_{in} = (1 + i0.03) f_{RF} \tag{2}$$

The black line outside the plasma in Fig.1 illustrates the vacuum chamber wall. The boundary conditions are as follows: the antenna current is three-dimensional current sheet, the wall is assumed to be perfect conductor and the wall position is defined from the extrapolation of the Fourier components of the outermost magnetic surface.

Fig.1. $\operatorname{Re} E_{+}$ (the real part of left-circularly polarized component of electric field) of Heliotron J plasma

3. Wave Propagation Analysis for $f_{RF} = 19.0$ MHz and 23.2 MHz

The radio frequency of 19.0 MHz is applied for the on-axis heating and 23.2 MHz is used for the inner-side heating. Previous study shows that the effective temperature of the minority fast ion by the on-axis heating is higher than by the inner-side heating, and the deuterium temperature increase in the inner-side heating is higher than in the on-axis heating [3].

The minority ion ratio and the plasma density dependence on the wave propagation in Heliotron J plasma was investigated on the standard configuration for 19.0 MHz and 23.2 MHz.

First, the results for $f_{RF} = 19.0$ MHz are shown in Fig.2 and Fig.3. Figure 2 shows the minority ion ratio dependence on Re E_+ . In this case, the radial wave length decrease as the minority ion ratio increases. Figure 3 shows the plasma density dependence on Re E_+ . In this case, the amplitude of the standing waves decrease as the plasma density increases, and increase as the density further increase again. This result can be caused that the increase in Re E_+ by the toroidal resonance of waves is observed.

Next, the results for f_{RF} = 23.2 MHz are shown in Fig.4 and Fig.5. Figure 4 shows the minority ion ratio dependence on Re E_+ . In this case, the wave length does not change, as the minority ion ratio increases. Figure 5 shows the plasma density dependence of Re E_+ . In this case, the radial and poloidal wave lengths increase as the plasma density increases.

Fig.2. Minority ion ratio dependence on $\text{Re}E_+$ for $f_{RF}=$ 19.0MHz: minority ion ratio (a) 5%, (b) 15% and (c) 20%. The fundamental cyclotron resonance layer for proton is also illustrated in the left figure.

Fig.3. Plasma density dependence on Re E_+ for f_{RF} = 19.0MHz: (a) n_e (0) = 2.0×10^{-19} m⁻³, (b) n_e (0) = 3.0×10^{-19} m⁻³ and (c) n_e (0) = 5.0×10^{-19} m⁻³

Fig.4. Minority ion ratio dependence of $\text{Re}E_+$ for $f_{RF} = 23.2$ MHz: minority ion ratio (a) 5%, (b) 15% and (c) 20%

Fig.5. Plasma density dependence of Re E_+ for f_{RF} = 23.2MHz: (a) $n_e(0) = 1.0 \times 10^{-19} \text{ m}^{-3}$, (b) $n_e(0) = 2.0 \times 10^{-19} \text{ m}^{-3}$ and (c) $n_e(0) = 5.0 \times 10^{-19} \text{ m}^{-3}$

Acknowledgements

This work is performed with the support and under the auspices of the Collaboration Program of the Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, the National Institute or Fusion Science (NIFS) Collaborative Research Program (NIFS10KUHL030 and NIFS11KUHL041).

References

- [1] T. Yamamoto et al: J, Nucl. Fusion (2008) S1075.
- [2] E. Yokota: J, トロイダルプラズマにおけるアル ヴェン固有モードの安定解析 (2001).
- [3] S. Kishi: J, ヘリオトロンJにおけるICRF加熱による高速イオンエネルギースペクトルの空間依存性 (2011).