Non-inductive current start-up experiments using the Lower Hybrid Wave on the TST-2 Spherical Tokamak

TST-2球状トカマク装置における低域混成波を用いた 非誘導電流立ち上げ実験

Takahiro Shinya, Yuichi Takase, Charles P. Moeller,¹ Takuma Inada, Takuma Wakatsuki,
Hidetoshi Kakuda, Naoto Tsujii, Satoru Yajima, Akira Ejiri, Hirokazu Furui, Hiroto Homma,
Kazuhiro Imamura, Keishun Nakamura, Kenta Nakamura, Masateru Sonehara, Toshihiro Takeuchi,
Hiro Togashi, Shintaro Tsuda, Takashi Yamaguchi and Yusuke Yoshida

新屋貴浩、高瀬雄一、Charles P. Moeller¹、稲田拓真、若月琢馬、角田英俊、
辻井直人、矢島悟、江尻晶、古井宏和、本間寛人、今村和弘、中村京春、中村建大、
曽根原正晃、竹内敏洋、冨樫央、津田慎太郎、山口隆史、吉田裕亮

The University of Tokyo, Transdisciplinary Science Bldg. 413, Kashiwanoha 5-1-5, Kashiwa 277-8561, Japan ¹General Atomics, San Diego, CA 92186 U.S.A. 東京大学 〒277-8561 千葉県柏市柏の葉5-1-5 新領域基盤棟413

Plasma current (I_p) was successfully non-inductively started and ramped up to 16 kA, by the lower hybrid wave (LHW) and the electron cyclotron wave (ECW) on TST-2. The LHW was excited by the capacitively-coupled combline (CCC) antenna. The current drive efficiency was a factor of two higher for the CCC antenna compared to antennas used previously. The maximum I_p was found to increase linearly with the toroidal magnetic field (B_t).

1. Introduction

Very high β plasmas have been achieved in spherical tokamak (ST) plasmas due to its low aspect ratio and strong shaping [1]. However, it is challenging to realize a compact burning ST fusion reactor without eliminating the central solenoid, which is normally used for inductive current drive. Highly efficient non-inductive plasma current (I_p) start-up and ramp-up by the lower hvbrid wave (LHW) is already demonstrated in conventional tokamaks. For example, I_p ramp-up by the LHW, leading to an advanced tokamak discharge with near unity bootstrap current fraction, was achieved on the JT-60U tokamak [2]. Conversely, it is generally believed that current drive by the LHW is not possible in ST plasmas. The objective of this work is to study and demonstrate I_p ramp-up by the LHW on the TST-2 spherical tokamak [3].

2. LHW Antennas on TST-2

In previous experiments on TST-2, the inductively-coupled combline (ICC) antenna (fast wave antenna, 11 elements) and the dielectric-loaded grill antenna (LHW antenna, 4 elements) were used for I_p start-up experiments at 200 MHz [3,4]. These experiments suggested that a new antenna which excites the LHW directly

with high directionality and sharp n_{\parallel} (refractive index along the magnetic field) spectrum. The CCC antenna was designed to satisfy these requirements, and is now used on TST-2 [3].

The CCC antenna (LHW antenna, 13 elements) excites the LHW (200 MHz) directly utilizing capacitive coupling between adjacent elements of the antenna. To obtain high directionality and sharp n_{\parallel} spectrum, the CCC antenna uses 13 antenna elements. RF power is gradually radiated into the plasma as it propagates through 13 elements of the antenna. In order to excite a sharp n_{\parallel} spectrum, approximately 10% of the incident RF power must remain at the last (13th) element.

2. Experimental Setup

In this experiment, the CCC antenna was used. Magnetic probes are used to measure RF power and phase at selected elements of the antenna, from which the n_{\parallel} spectrum of the excited LHW can be calculated. Toroidal magnetic field (B_t) of up to 0.12 T was used. The line integrated density (n_el) along a vertical chord through the nominal center of the plasma (R = 0.38 m) was measured by a microwave interferometer.

3. Results of the I_p Start-up Experiment

 $I_{\rm p}$ was non-inductively ramped up to 16 kA by

the LHW (~30 kW) and the ECW (~5kW). This is a record for TST-2 non-inductive plasmas. 10% of the input RF power remained at the 6-7th element due to strong radiation into the plasma. The width of the excited n_{\parallel} spectrum is about half as wide as the grill antenna. The current drive figure of merit ($\eta_{CD} = I_P \langle \bar{n}_e \rangle R_0 / P_{RF}$, where $\langle \bar{n}_e \rangle =$ $n_e l/0.5$) achieved by the CCC antenna is a factor of two higher than that obtained by the ICC and the grill antennas, as shown in Fig. 1 (a). As shown in Fig. 1(b), the maximum I_p was found to depend linearly on B_t as I_p [kA] = 148 B_t [T] – 0.5.

Fig. 1. (a) η_{CD} obtained using CCC (diamond), grill (square), ICC (triangle) antennas. (b) Correlation between maximum I_p and B_t .

3. Discussion and Conclusions

Non-inductive I_p start-up and ramp-up to 16 kA by the LHW was achieved successfully using the CCC antenna. The n_{\parallel} spectrum of the excited LHW was broader than the optimum case because of strong antenna-plasma coupling, but it is approximately half as wide as that of the grill antenna. In order to excite a sharper n_{\parallel} spectrum, it is necessary to reduce the plasma density in front of the antenna to weaken antenna-plasma coupling.

The current drive efficiency achieved using the CCC antenna was a factor of two to three higher than that obtained using the ICC antenna or the grill antenna, presumably because of direct LHW excitation with good directionality and a narrow n_{\parallel} spectrum.

The maximum I_p was found to increase linearly with B_t . The physical mechanism should be investigated to reach higher I_p . Generally, higher B_t improves accessibility of the LHW to the plasma core. The accessibility condition can be derived from the cold plasma dispersion relation [5] as

$$\left| n_{\parallel} \right| \ge n_{a} = \omega_{pe} / \omega_{ce} + \sqrt{\varepsilon_{\perp}} , \qquad (1)$$

where $\omega_{pe}^{2} = n_{e}q^{2} / \varepsilon_{0}m_{e}$, $\omega_{pi}^{2} = n_{i}q^{2} / \varepsilon_{0}m_{i}$, $\omega_{ce} = qB/m_{e}$, and $\varepsilon_{\perp} = 1 + (\omega_{pe}/\omega_{ce})^{2} - (\omega_{pi}/\omega)^{2}$. The value of n_{a} is evaluated using the measured B_{t} and $\langle \overline{n}_{e} \rangle$ at R = 0.38 m. Figure 2 (a) shows the nearly inversely proportional dependence of the experimentally achieved I_{p} on calculated n_{a} . The n_{\parallel} spectrum of the excited LHW is shown in Fig. 2 (b). In order to satisfy the accessibility condition for $n_{\parallel} = -2$, B_{t} must be increased up to 0.15-0.2 T.

As future work, the change of n_{\parallel} due to toroidal geometry magnetic field shear must be taken into account for accessibility analysis. This effect is important for ST because n_{\parallel} can change dramatically due to high toroidicity. We will calculate ray-tracing code will be used to study this effect. Furthermore, RF power deposition profile, the velocity distribution function, and the driven current density profile will be calculated using a Fokker-Planck code. Results of these studies will be used to evaluate the required B_t to reach higher levels of I_p (50-100 kA) in TST-2.

Fig. 2. (a) I_p versus n_a . (b) n_{\parallel} spectrum of CCC antenna, as measured by magnetic probes.

Acknowledgments

This work was supported by JSPS Grant-in-Aid for Scientific Research 21226021, and by NIFS Collaborative Research NIFS10KOAR012 and NIFS14KOCR001.

References

- M. Gryaznevich et al., Phys. Rev. Lett. 80, (1998) 3972.
- [2] Y. Takase et al., J. Plasma Fusion Res. 78, (2002) 8.
- [3] Y. Takase et al., Nucl. Fusion 53, (2013) 063006.
- [4] T. Wakatsuki et al., Nucl. Fusion 54 (2014) 093014.
- [5] T. H. Stix, *Waves in Plasmas*, (Springer, New York, 1992).