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    Here we report a new microwave frequency comb reflectometer for measuring the density profile as a 
continuous function of radius with high temporal resolution. Direct simultaneous waveform detection with 
a ultra fast digital storage oscilloscope allows us to perform phase-sensitive convolution analysis of the 
reflected waves: convolution of pulses can eliminate statistical noise. The fundamental functions of the 
reflectometer are checked by a test-bench experiment. Initial results of plasma experiments on PANTA and 
the first attempt at reconstructing of the density profile are demonstrated. 

 
 
1. Introduction 
   A statistical interpretation of plasma turbulence 
and transport has been developed [1]. For example, 
inhomogeneities in the mean plasma parameter are 
neither stationary nor smooth, but large-amplitude 
corrugations in the profile evolve dynamically 
[2–4]. To observe such corrugations, which can be 
essential to the dynamical response of turbulent 
plasmas, it is necessary to simultaneously measure 
the mean profile and its fluctuations precisely.   
   Microwave frequency comb technique is 
accelerated over the past few years and this 
technique is applied to the reflectometry for core 
plasma diagnostic in fusion plasma [5]. Microwave 
frequency comb reflectometer is a possible 
candidate to measure the density profile as a 
continuous function of radius with high temporal 
resolution [6]. For this challenging problem, we 
developed a new microwave frequency comb 
reflectometer. Experimental tests are carried out on 
the PANTA device.  
 
2. Microwave frequency comb reflectometer 
   Figure 1 illustrates the circuit of our 
reflectometer. The output from com-generator (the 
repetition frequency of 0.5 GHz) is filtered by the 

dual-band (Ku- and K-band, i.e. 12-26 GHz) broad 
band-pass-filter (BPF), where the equalizer (EQ) is 
used to obtain the flat level of amplitude. The 
band-passed output is linearly amplified (AMP) and 
fed to the dual-band rectangular horn antenna 
(ANT) by the coaxial cable. The incident and 
reflected wave signals are directly transferred to the 
digital storage oscilloscope (DSO), which has a 
frequency band of 33/50 GHz (the sampling 
frequency is 80/160 GHz), so the waveforms of the 
incident and reflected signals are detected in the 
form of digital signals with very high temporal 
resolution. The O-mode cut-off densities of our 
system are in range of 1.8-8.4x1018 m-3, which can 
cover the typical density profile of the PANTA 
experiment. And thus our system enables 
simultaneous monitoring of density fluctuation 
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Fig. 1 Block diagram of the system. 
 



 

levels at 29 distinct spatial locations with very high 
temporal resolution (eight channels in previous 
work [8]).  

 
3. Test bench experiment 
  The microwave frequency comb reflectometer is 
currently being tested. The microwave is launched 
aiming at the planer metal (SUS) reflector 10-20 cm 
away from the antenna. Figures 2(a)(b) show the 
typical incident and reflect microwave waveform 
and power spectrum of the incident wave. The 
repetition period is 2 ns (corresponding to a 
repetition frequency of 0.5 GHz). The delay 
between the envelope of the incident- and 
reflect-wave corresponds to the distance between 
the antenna and reflector. In a single frequency 
reflectometric measurement the phase of the 
microwave repeats itself at distance intervals equal 
to the wavelength. Thus, a phase delay δθ due to 
optical path difference between incident- and 
reflect-wave gives the same reflectometric 
measurement as (2nπ+ δθ), where n is an integer. 
This "fringe shift problem" makes the distance 
measurement difficult. One of the techniques for 
determining n is performing a reflectometric 
measurement at two or more frequency and 
comparing the phases for the different frequencies. 
In this case, the equivalent wavelength is defined as 
λeq = (λ1-λ2)/λ1λ2. In our case, this technique can be 
applied. Figure 3 shows frequency dependence of 
phase difference between incident- and reflect-wave. 
The slope of this plot gives the distance between the 
antenna and reflector. In this case, distance of 20 
cm is correctly obtained. An estimation of the 
distance from the delay between envelopes is 
equivalent to what is done in the multi-frequency 
reflectometry. In our case, λeq becomes 0.6 m, 
which is longer than a diameter of the vacuum 

vessel of PANTA (=0.535 m). 
  If the target is switched from metal reflector to 
plasma, the dependence of phase delay shown in 
Fig. 3 is modified. From this modification the 
electron density profile can be estimated as a 
continuous function of radius. The conditional 
averaging technique is very useful to detect the 
delay time of the envelopes and frequency 
dependence of phase delay precisely. Averaging 
over 500 periods (1 period = 1/0.5 GHz = 2 ns) can 
suppress the 10 % noise in amplitude. The temporal 
resolution is evaluated to be 1 µs in this case.  

5. Summary 
  We have developed a method to reconstruct the 
density profile as a continuous function of radius 
with a temporal resolution of 1 µs by using of a new 
microwave frequency comb reflectometer. This 
experimental method is very promising for 
developing the physics of plasma turbulence and 
transport.  
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Fig. 2 Typical incident- (a) and reflect- 
microwave (b) and the power spectrum density 
of the incident wave (c). 

Fig. 3 Observed frequency dependence of 
the phase difference 


