Selective Production of Reactive Species for Plasma Medicine Using Vacuum Ultraviolet Photodissociation

プラズマ医療のための真空紫外光による選択的活性種生成

<u>Ryo Ono</u>, Y. Tokumitsu, S. Zen, and S. Yonemori 小野亮, 徳光悠介, 全俊豪, 米森星矢

The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan 東京大学 〒113-8656 東京都文京区本郷7-3-1

A production method for producing reactive species (OH, H, O, O₃, and O₂($a^1\Delta_g$)) using vacuum ultraviolet (VUV) photolysis with an excimer lamp is proposed. It can be used for studying effects of the reactive species on plasma medicine. Densities of reactive species produced by the VUV method are calculated using a simulation and the validity of the simulation is verified by measuring O₃ and OH densities using UV absorption and laser-induced fluorescence.

1. Introduction

In plasma medicine, reactive species produced in the plasma are considered to have therapeutic effects. However, the effect of each kind of reactive species on plasma medicine is still not clear because many kinds of reactive species are produced in plasma, and their individual medical effects are difficult to isolate. For investigation of the effects of reactive species on plasma medicine, another production method of reactive species is needed that has a much simpler reaction system than plasma. In this paper, a production method of reactive species using vacuum ultraviolet (VUV) photolysis is proposed.

2. Simulations

The VUV method is shown in Fig. 1. It is similar to a He atmospheric-pressure plasma jet (APPJ) used for plasma medicine. Helium-buffered mixture (H₂O/He or O₂/He) flows in a quartz tube of 2 mm diameter. The VUV light from the excimer lamp (Xe₂ lamp at 172 nm or Kr₂ lamp at 146 nm) irradiates the flowing gas near the quartz tube nozzle to photodissociate H₂O and O₂ to produce OH, H, O, O₃, and O₂($a^{1}\Delta_{g}$). When an O₂/He is used, O₂ is photodissociated by the VUV light as

$$O_2 + hv \rightarrow O(^1D) + O. \tag{1}$$

The resulting $O(^{1}D)$ reacts with O_{2}

$$O(^{1}D) + O_{2} \rightarrow O + O_{2}(X, a, b).$$
 (2)

 $O_2(b^1\Sigma_g^+)$ is deactivated to $O_2(a^1\Delta_g)$ as

$$O_2(b) + M \rightarrow O_2(a) + M.$$
(3)

Fig.1. Schematics of the VUV method.

 $O_2(a^1\Delta_g)$ is produced via reactions (2) and (3). O atoms produced by reactions (1) and (2) react with O_2 to produce O_3

$$O + O_2 + M \rightarrow O_3 + M. \tag{4}$$

Thus, O, O₃, and O₂($a^{1}\Delta_{g}$) are produced as a result of the VUV photodissociation of O₂ (reaction (1)).

When an H_2O/He is used, photodissociation of H_2O leads to production of OH and H

$$H_2O + hv \rightarrow OH + H.$$
 (5)

Figure 2(a) shows a simulation result when the VUV light from a Xe_2 lamp irradiates a $H_2O(2.8\%)/He$ mixture. The simulation is one-dimensional, including 42 photolysis and chemical reactions and 4 wall reactions. The inner diameter of quartz tube is 2 mm, the gas flow rate is 2 L/min (= 1.06 cm/ms), and the illuminance of the

Fig.2. Simulation results for Xe₂ lamp and Kr₂ lamp methods.

Xe₂ lamp is 50 mW/cm² which is approximately the maximum illuminance provided by commercially available Xe₂ lamps. The VUV light is irradiated for 1 cm length (x = 0 to 1 cm in Fig. 2) and the target is assumed to be placed at 0.5 cm from the quartz tube nozzle (x = 1.5 cm in Fig. 2). The nozzle is at x = 1 cm. Figure 2(a) shows that 1–2 ppm of H and OH radicals are supplied to the target. The OH density is on the same order of that produced by a He-APPJ [1].

Figure 2(b) shows a simulation result when the VUV light from a Kr₂ lamp irradiates an O₂(0.2%)/He mixture. The Kr₂ lamp has a large cross section for O₂ photolysis, while the Xe₂ lamp has a large cross section for H₂O photolysis. The VUV irradiation length is increased to 5 cm. When the Kr₂ lamp (146 nm) is used, a MgF₂ of a CaF_2 tube should be used instead of the quartz tube. Figure 2 shows that 2 ppm of O atoms are supplied to the target, but it is an order of magnitude smaller than that produced by a He-APPJ [1]. If the gas flow rate is reduced to 0.1 L/min to increase the VUV light irradiation time, high densities of O₃ and $O_2(a^1\Delta_g)$ are obtained: higher than 1000 ppm and 10 ppm, respectively, which are equivalent to or higher than those produced by a He-APPJ [2, 3].

3. Experiments

To verify the validity of the simulations, the O_3 and OH densities produced by the Xe₂ lamp method are measured. A Xe₂ excimer lamp (Min-Excimer, Ushio) is used as the VUV source. The O₃ density is measured using 254 nm absorption from a low-pressure mercury lamp when dry or humid O₂(0–100%)/He mixture is irradiated with the Xe₂ lamp, and the OH density is measured using laser-induced fluorescence (LIF) at 2 mm distance from the quartz tube nozzle when $H_2O(2.8\%)/He$ is irradiated with the Xe₂ lamp. The measured O₃ densities are slightly higher than the simulated results but the difference is within 35%. It is allowable. The difference for OH density is 3–4 times, which is not negligible but understandable if measurement errors are considered.

4. Conclusions

The production of OH, H, O, O₃, and O₂($a^{1}\Delta_{g}$) using the VUV photodissociation of H₂O and O₂ was proposed. It was studied using simulations and measurements. The VUV method produced sufficient amount of OH, O₃, and O₂($a^{1}\Delta_{g}$) compared with He-APPJ. However, the density of O atoms was much smaller than He-APPJ. Instead of the VUV method, we are at present developing another method for O atoms production. According to a simulation, the alternative method can supply more than 100 ppm of O atoms continuously to a target. We are now planning experiments to verify the simulation of the method.

References

- S. Yonemori and R. Ono: J. Phys. D: Appl. Phys., 47 (2014) 125401.
- [2] B. L. Sands and B. N. Ganguly: J. Appl. Phys., 114 (2013) 243301.
- [3] J. S. Sousa, K. Niemi, L. J. Cox, Q. T. Algwari, T. Gans, and D. O'Connell: J. Appl. Phys., 109 (2011) 123302.