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A model is developed to explain the inward diffusion of plasmas in dipole magnetic fields, which 

seemingly contradicts the entropy principle by creating “gradients”. We consider a diffusion process on 

a proper frame that models the macroscopic hierarchy of magnetized particles. Transforming back to the 

laboratory frame the Fickian diffusion on the proper frame, we observe creation of gradients. Theory is 

verified by numerical simulations of the obtained Fokker-Planck equation. We obtain a peaked density 

profile that mimics radiation belts in planetary magnetospheres. 

 

 

1. Introduction 
Empirical models have been developed to 

describe the density profiles observed in planetary 

magnetospheres [1-2]. The purpose of this research 

is to formulate a theory of inward diffusion [3-4] in 

a properly defined magnetic space that explains 

how the geometry of the magnetic field affects the 

considered transport mechanism. The key idea is 

the use of the foliated phase space modeling a 

macroscopic hierarchy [5]. Using the change of 

variable formula of stochastic analysis (Ito’s 

Lemma [6,7]), a set of stochastic differential 

equations (SDEs) and the associated Fokker-Planck 

equation (FPE) are obtained on the “proper frame” 

spanning the effective phase space of the foliation. 

The stochastic source is the macroscopic (compared 

to the characteristic scale of cyclotron motion) 

turbulent electric potential 𝛿𝜑. 

 

2. 𝑬 × 𝑩 Driven Transport 
To explain transport occurring in the direction 

𝑥⊥ normal to flux surfaces, violation of the third 

adiabatic invariant (the magnetic flux 𝜓) is invoked 

[1-2]. Electromagnetic fluctuations δ𝑬 = −∇𝛿𝜑 

generate a drift velocity 
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Where 𝑩 = ∇𝜓 × ∇𝜗 is the dipole magnetic field 

and (𝑟, 𝑧, 𝜗) a cylindrical reference system (note 

that dipoles are 𝜗-symmetric). If we express the 

turbulent potential 𝛿𝜑 with Gaussian white noise 

𝛤 = �̇�, equation (1) takes the form of an SDE 

(random variables are symbolized by upper-case 

letters. 𝑊 indicates a Wiener process and 𝐷⊥
1/2

 is 

a measure of the amplitude of the fluctuations): 

𝑑𝑋⊥ = 𝐷⊥
1/2 𝑑𝑊

𝑟𝐵
 (2) 

 

3. Definition of the Stochastic Integral 

Due to the nowhere differentiability of the 

Wiener process, definition of the stochastic integral 

shows arbitrariness with respect to a parameter 

𝛼 ∈ [0,1] which physically represents the way 𝑊 

evolves in time. Depending on 𝛼, the solution to 

equation (2) changes. The case 𝛼 = 0 is known as 

Ito’s definition, the choice 𝛼 = 1/2  is due to 

Stratonovich [6,7]. This arbitrariness has two main 

consequences: the change of frame formula for the 

equations of motion depends on 𝛼 and the FPE 

corresponding to the equations of motion is itself 

determined by 𝛼  [6,7]. The change of variable 

formula for an arbitrary 𝛼 cannot be found in the 

literature and it is derived in this work. By physical 

arguments we then show that the condition 𝛼 = 0 

is consistent with the physics of inward diffusion. 

 

4. Change of Frame 

To interpret inward diffusion as a flattening 

(Fickian) diffusion process, we need to find a new 

reference system 𝑦(𝑥⊥, 𝑙, 𝑡)  that satisfies the 

property (𝑙 is the length along field lines, 𝑡 the 

time variable, and 𝑣𝛼 a drift in the new frame): 

𝑑𝑌 = 𝑣𝛼𝑑𝑡 + 𝐷⊥
1/2

𝑑𝑊 (3) 

In other words, the Wiener process 𝑊  has to 

appear in the equation of motion as an independent 

factor. We further require 𝜕𝑡𝑦 = 𝜕𝑙𝑦 = 0. On the 

other hand, 𝑦 must satisfy the change of variable 

formula. This leads us to conclude that 𝑦 = 𝜓 with  
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5. Dynamics along the Magnetic Field 

Particles move along field lines and the 

corresponding parallel equations of motion are 
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required. The parallel velocity 𝑣∥ is determined by 

bounce motion, dynamical friction, and parallel 

turbulent electric field. Furthermore, since 𝛻𝜓 and 

𝛻𝑙  are not normal vectors, the perpendicular 

motion affects the value of 𝑙. In summary
1
: 
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Here 𝐷⊥
1/2

𝑑𝑊⊥ = −𝜕𝜗𝛿𝜑, 𝑚𝐷∥
1/2

𝑑𝑊∥ = −𝑞𝜕𝑙𝛿𝜑, 

𝛾 is the friction coefficient, and 𝑚 the electron 

mass. Finally, 〈𝜇〉𝑣 is the ensemble average over 

the velocity space of the magnetic moment. 

 

6. The Fokker-Planck Equation 

Using equations (4-5) and the formalism of 

stochastic analysis it is possible to derive the FPE 

of inward diffusion as below (𝑞 = ∇𝑙 ∙ ∇𝜓/(𝑟𝐵)2): 
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7. Numerical Simulations 

Equation (6) was simulated for 𝛼 = 0. Figure 1 

shows the relationship between the particle density 

𝜌 and the diffusion coefficient of inward diffusion 

𝐷⊥. In Fig. 2 the time evolution of the (equatorial) 

density maximum 𝜌𝑀 and its radial position 𝑟𝑀 is 

shown. As evident and in contrast with usual 

diffusion, inward diffusion steepens the density 

gradient along the equator of the dipole field. 

 

8. Conclusion 

A model for inward diffusion was developed 

through a stochastic approach. The phenomenon is 

interpreted as Fickian diffusion occurring in the 

proper frame, a reference system where particles 

perform Brownian motion with drift. Through 

numerical simulations of the derived FPE, the effect 

of normal transport in the formation of the 

self-organized plasma structure was studied. The 

first interesting result is that the particle number per 

unit fluxtube volume is not a constant, i.e. 

𝜕𝜓𝑃 ≠ 0 . Moreover, because of the observed 

                                                   
1 The 𝛼 dependent drift arising from Ito’s Lemma in 

the 𝑙 equation is neglected (𝑣∥ is assumed dominant). 

dependence of the peak position on normal 

transport, we expect inward diffusion to drive the 

plasma out of a tokamak confining device. 

 

 
Fig. 1. Normal diffusion dependence of the laboratory 

density. (a): 10−2𝐷⊥ at t = 14.4 and ~84% particles 

left. (b): 10−1𝐷⊥ at t = 7.2 and ~67% particles left. 

(c): 𝐷⊥  at t = 2.4  and ~55%  particles left. (d): 

10𝐷⊥ at t = 0.36 and ~46% particles left. 

 

 

Fig. 2. (a): evolution of 𝝆𝑴. (b): evolution of 𝒓𝑴. 

Color legend: purple 10−2𝐷⊥ , blue 10−1𝐷⊥ , sky 

blue 0.5𝐷⊥, green 𝐷⊥, yellow 5𝐷⊥, red 10𝐷⊥. 
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