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Time-resolved Density Measurement of Pulse Discharge Plasma
by Curling Probe
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Curling probe (CP) enables measurement of electron density even in depositive plasmas, measuring a shift
of resonance frequency by network analyzer (NWA). In a pulsed discharge, the resonance frequency varies
in time, and the frequency spectrum becomes complex and unstable. In order to obtain a stable frequency
spectrum during the discharge; the frequency sweep of NWA is triggered by the discharge pulse, in
on-sweep mode or on-point mode. The electron density was successfully measured in time-resolved

manner for pulsed discharge frequency of 0.4 to 10 kHz.

1. Introduction

A Langmuir probe has been used as a simple
plasma diagnostic tool, however it cannot be used
in most reactive plasmas since the probe surface is
stained with electrically nonconductive layer, thus
interrupting the dc current measurement. Recently,
a new type of microwave resonator probe, the
curling probe (CP), has been developed [1] which
enables direct measurement of electron density even
in depositive plasma. Electron density n. (cm?) is
obtained from the measured frequency shift of
1/4-wavelength resonance at the frequency fo (GHz)
in vacuum to f; (GHz) in plasma from the following
simple equation:

f2-f7 . .
n, =y———2%x10
0.806

Here the coefficient yis determined by the probe
structure and dimensions: y=5.1 for antenna length
of 100 mm and a quartz cover thickness of 0.2 mm.

The CP is compact (minimum diameter ~6 mm)
and free from metal impurities owing to alumina or
yttria coating. A wide range of electron density
(10°-10%cm3) can be measured with high
sensitivity. Moreover, an opto-curling probe (OCP)
was recently developed [2]. Both CP and OCP are
commercially available [3].

To date, the CP has been applied to a constant
density stationary plasma where the resonance
frequency is easily measured by network analyzer
(NWA). However, when the CP is inserted into a
pulse-modulated plasma, the resonance frequency
oscillates at the modulation frequency due to
temporal change in electron density. As a result,
the frequency spectrum becomes complex and
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varies sweep by sweep of NWA. We have
previously reported [4] that a stable frequency
spectrum can be obtained with synchronization
between the pulse period and the NWA sweep
period. In this paper, we represent a time-resolved
electron density measurement by externally
triggering the NWA sweep with on-sweep mode or
on-point mode.

2. Experimental

The CP measurement was performed in an
apparatus shown in Fig. 1, where a pulsed glow
plasma is produced in nitrogen at 10 Pa at the pulse
frequency 0.4 -10 kHz with duty ratio of 10 - 50 %,
applying a negative high-voltage (~ -1.7 kV) to a
12-cm-diam. cathode K in a cylindrical discharge
chamber of 60 cm in diameter and 50 cm in length.
The CP of 1.6 cm in diameter is set at the center
(x=y=z=0) of the chamber, 5 cm above the cathode
(y = -5 cm). Five sets of the grounded anode A
(30 cm x 30 cm) are installed at the location
X =£15 cm, y =15 cm, y = -17 cm and z =
-15 cm.
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Fig. 1. Experimental apparatus.



The CP is connected to the NWA (Agilent, model
E5071C) which enables time-resolved measurement
of reflectance (S11), externally triggered by a signal
delayed from a synchronous output of the
high-voltage pulse generator.

3. On-Sweep Mode Measurement

First of all, the following synchronization
condition [4] should be fulfilled to obtain a stable
spectrum:

Tpls -
(n-1) = m(integer) Q)

Tswp
where n is the number of data points, Tps and Tswp
are periods of discharge pulse and frequency sweep,
respectively. For example, a pulsed plasma at
0.4 kHz (Tswp=2.5 ms) and 13% duty ratio was
measured as shown in Fig. 2(a) for m=10, n=1601,
and a delay time of 20 us. This spectrum
simultaneously displays 10 spectra at a interval of
Tpis/m=0.25 ms. Analyzing this spectrum, one can
obtain a time-resolved reflectance spectrum as
shown in Fig. 2(b) where t denotes the time after
discharge ignition.
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Fig. 2. (a) Raw data by on-sweep mode and
(b) time-resolved data by post data analysis.

The resonance frequency observed in Fig. 2(b)
gives the electron density at the discharge time . In
this way, the electron density of 0.4 kHz pulsed
discharge (duty ratio 13%) was measured changing
the delay time, as shown in Fig. 3.
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Fig. 3. Electron density measured by on-sweep mode.

4. On-Point Mode Measurement

For high-frequency discharge pulse (short Tps),
Eg. (1) requires a short Tswp to get the same
time-resolution (same m and n). Then, the
frequency sweep is often intermitted during the
sweep, which makes post data analysis impossible.
In this case, on-point mode is very useful where the
NWA digitally sweeps the frequency and measures
one data point per each external trigger. Thus, a full
spectrum is obtained after n triggers, and one can
find the time-resolved spectrum (electron density)
by changing the delay time. The measured example
is shown in Fig.4 for 1 kHz and 30% duty ratio
discharge. The external trigger was delayed by 10us
each, and the resultant time-resolved frequency
spectrum gives electron density as a function of
discharge time 7, as shown in Fig. 5.
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Fig. 4. Time-resolved spectrum by on-point mode.
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Fig. 5. On-point mode measurement of electron density.

The result of much higher frequency such as
10 kHz will be also reported in the conference.
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