High－accuracy numerical integration of charged particle dynamics based on recurrence formula with symmetric decomposition漸化的対称分解に基づく荷電粒子運動の高精度数値積分

FURUKAWA Masaru古川勝

Graduate School of Engineering，Tottori University， Minami 4－101，Koyama－cho，Tottori－shi，Tottori 680－8552，Japan鳥取大学大学院工学研究科 〒 680－8552 鳥取市湖山町南 4－101

Abstract

An explicit numerical scheme for a charged particle motion in static electromagnetic field is developed．Non－canonical variables are used．The scheme is based on the operator decomposition and preserves symplecticity and time－reversal symmetry．Its accuracy can be improved to arbitrary higher order by the recurrence formula．Numerical examples are presented，with a focus on the trade－off between accuracy improvement and increase of computational cost．

1．Introduction

Charged particle motion is an essence of plasma physics．We often need to calculate its orbit very accurately for a long time period．The numerical scheme we develop here is based on the operator decomposition and the recurrence for－ mula，that were developed separately for quan－ tum Monte Carlo simulation $[1,2]$ and celestial mechanics［3］．We extend them to non－canonical variables，and obtain an explicit scheme．
In this section，basic idea of the operator de－ composition and recurrence formula of $[1,2,3]$ is explained briefly．Let us consider a dynamical system $\dot{z}=V[z]$ ，where z is a state vector and $V[z]$ denotes a vector field．The formal solution is given by $z(t)=\mathrm{e}^{t V[z]} z(0)$ ．Generally，it is not easy to calculate the exponential operator．For a Hamiltonian system，we have $V[z]=\mathcal{J} \partial_{z} H[z]$ ， where $H[z]$ is a Hamiltonian，$z:=(q, p)^{\mathrm{T}}$ with q and p being canonical coordinate and momen－ tum，and \mathcal{J} is an anti－symmetric tensor called Poisson tensor．If the Hamiltonian has a sepa－ rable form $H[z]=H_{1}[p]+H_{2}[q], V[z]$ can be de－ composed as $V[z]=V_{1}[p]+V_{2}[q]$ ，where $V_{1}[p]$ and $V_{2}[q]$ are vector fields generated only by $H_{1}[p]$ and $H_{2}[q]$ ，respectively．A harmonic oscillator has this form．

In numerical computation，we need a for－ mula to evolve $z(t)$ from t_{j} to $t_{j+1}=t_{j}+\Delta t$ ． According to the formal solution，we have $z_{j+1}=\mathrm{e}^{\Delta t V[z(t)]} z_{j}$ ，where z_{j} denotes $z\left(t_{j}\right)$ ． For the separable Hamiltonian，the expo－ nential operator can be approximated as $\mathrm{e}^{\Delta t\left(V_{1}[p]+V_{2}[q]\right)}=\mathrm{e}^{\Delta t V_{1}[p]} \mathrm{e}^{\Delta t V_{2}[q]}+\mathcal{O}\left(\Delta t^{2}\right)$ ．Dur－ ing the operation of $\mathrm{e}^{\Delta t V_{2}[q]}, q$ does not change．

Thus p changes due to a constant vector field $V_{2}\left[q_{j}\right]$ and we exactly integrate to obtain $p_{j+1}=p_{j}+\Delta t V_{2}\left[q_{j}\right]$ ．Next，during the operation of $\mathrm{e}^{\Delta t V_{1}[p]}, p$ does not change and thus we exactly integrate to obtain $q_{j+1}=q_{j}+\Delta t V_{1}\left[p_{j+1}\right]$ ．This gives us the 1st－order explicit scheme＂G_{1}＂．We can easily prove that the 2 nd－order scheme＂S_{2}＂ is obtained by symmetrizing the operator decom－ position as $\mathrm{e}^{\Delta t V}=\mathrm{e}^{\frac{\Delta t}{2} V_{1}} \mathrm{e}^{\Delta t V_{2}} \mathrm{e}^{\frac{\Delta t}{2} V_{1}}+\mathcal{O}\left(\Delta t^{3}\right)$ ． Further higher－order schemes can be de－ rived by a recurrence formula of the form： $S_{2 m}(\Delta t)=S_{2 m-2}\left(p_{m 1} \Delta t\right) \cdots S_{2 m-2}\left(p_{m r} \Delta t\right)$, where $m=2,3,4, \cdots$ and r is an odd inte－ ger． $2 m$ becomes the order of the scheme． One of the useful choices is $p_{m j}=k_{m}$ for $j=1,2,4,5$ and $p_{m 3}=1-4 k_{m}$ for $r=5$ ，where $k_{m}:=1 /\left(4-4^{1 / 2 m-1}\right)$ ．

2．Operator decomposition and recurrence formula for charged particle motion via non－canonical variables
 The Hamiltonian of a charged particle in static

 electromagnetic field is given by $H[\boldsymbol{z}]=(\boldsymbol{p}-$ $e \boldsymbol{A}(\boldsymbol{q}))^{2} / 2 m+e \phi(\boldsymbol{q})$ ，where $\boldsymbol{q}=\left(q^{1}, q^{2}, q^{3}\right)^{\mathrm{T}}$ and $\boldsymbol{p}=\left(p_{1}, p_{2}, p_{3}\right)^{\mathrm{T}}$ are canonical coordi－ nates and momenta，respectively，and $\boldsymbol{z}=$ $\left(q^{1}, q^{2}, q^{3}, p_{1}, p_{2}, p_{3}\right)^{\mathrm{T}}$ ．The mass and the charge are denoted by m and e ，respectively， \boldsymbol{A} and ϕ are vector and scalar potentials，respectively．This Hamiltonian，however，is not separa－ ble，and thus the operator decomposition ex－ plained above does not seem to give a sim－ ple explicit scheme．To resolve it，we adopt non－canonical variables $\boldsymbol{x}=(x, y, z)^{\mathrm{T}}$ and $\boldsymbol{v}=$ $\left(v_{x}, v_{y}, v_{z}\right)^{\mathrm{T}}$ ．Then the Hamiltonian is written
in a separable form as $H^{\prime}\left[\boldsymbol{z}^{\prime}\right]=H_{1}^{\prime}[\boldsymbol{v}]+H_{2}^{\prime}[\boldsymbol{x}]$ where $\boldsymbol{z}^{\prime}=\left(x, y, z, v_{x}, v_{y}, v_{z}\right)^{\mathrm{T}}, H_{1}^{\prime}[\boldsymbol{v}]:=m \boldsymbol{v}^{2} / 2$ and $H_{2}^{\prime}[\boldsymbol{x}]:=e \phi(\boldsymbol{x})$.

On the other hand, the Poisson tensor \mathcal{J} transforms to a non-canonical form as $\mathcal{J}^{\prime}=\mathcal{J}_{1}^{\prime}+\mathcal{J}_{2}^{\prime}$ with

$$
\begin{aligned}
\mathcal{J}_{1}^{\prime} & :=\frac{1}{m}\left(\begin{array}{c:c}
\mathbf{0} & \mathbf{1} \\
\hdashline \mathbf{1} & \mathbf{0}
\end{array}\right), \\
\mathcal{J}_{2}^{\prime} & :=\frac{e}{m^{2}}\left(\begin{array}{c:ccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hdashline \mathbf{0} & -B_{x} & 0 & B_{x} \\
& B_{y} & -B_{x} & 0
\end{array}\right),
\end{aligned}
$$

where $\mathbf{0}$ and $\mathbf{1}$ denote 3×3 zero and unit matrices, respectively.

Then the evolution equation becomes $\dot{z}^{\prime}=\left(\mathcal{J}_{1}^{\prime}+\mathcal{J}_{2}^{\prime}\right) \partial_{z^{\prime}}\left(H_{1}^{\prime}+H_{2}^{\prime}\right)$. The \mathcal{J}_{1}^{\prime} terms allow us a simple explicit integration scheme. In order to obtain a simple explicit scheme for \mathcal{J}_{2}^{\prime} terms, we introduce $H_{1}^{\prime}=H_{1 x}^{\prime}+H_{1 y}^{\prime}+H_{1 z}^{\prime}$ with $H_{1 x}^{\prime}:=m v_{x}^{2} / 2$ and so on. Note that $\mathcal{J}_{2}^{\prime} \partial_{z^{\prime}} H_{2}^{\prime}$ vanishes. By these expressions, we obtain the following operator decomposition:

$$
\begin{aligned}
\dot{\boldsymbol{z}}^{\prime}= & \mathcal{J}_{1}^{\prime} \partial_{\boldsymbol{z}^{\prime}} H_{1}^{\prime}+\mathcal{J}_{1}^{\prime} \partial_{\boldsymbol{z}^{\prime}} H_{2}^{\prime} \\
& +\mathcal{J}_{2}^{\prime} \partial_{\boldsymbol{z}^{\prime}} H_{1 x}^{\prime}+\mathcal{J}_{2}^{\prime} \partial_{\boldsymbol{z}^{\prime}} H_{1 y}^{\prime}+\mathcal{J}_{2}^{\prime} \partial_{\boldsymbol{z}^{\prime}} H_{1 z}^{\prime} \\
= & V_{1}\left[\boldsymbol{z}^{\prime}\right]+V_{2}\left[\boldsymbol{z}^{\prime}\right]+W_{x}\left[\boldsymbol{z}^{\prime}\right]+W_{y}\left[\boldsymbol{z}^{\prime}\right]+W_{z}\left[\boldsymbol{z}^{\prime}\right] .
\end{aligned}
$$

It is easy to see that each term allows us a simple explicit integration scheme. The formal solution gives us the 1st-order scheme G_{1} as

$$
\boldsymbol{z}_{j+1}^{\prime}=\mathrm{e}^{\Delta t V_{1}} \mathrm{e}^{\Delta t V_{2}} \mathrm{e}^{\Delta t W_{x}} \mathrm{e}^{\Delta t W_{y}} \mathrm{e}^{\Delta t W_{z}} \boldsymbol{z}_{j}^{\prime}+\mathcal{O}\left(\Delta t^{2}\right)
$$

As explained in Introduction, we obtain the 2nd-order scheme S_{2} by symmetrizing the operator decomposition, and higher-order schemes S_{n} with $n=2 m(m=2,3,4, \cdots)$ by the recurrence formula.

3. Accuracy and computational cost

The scheme developed above has been implemented numerically. As a test, a charged particle orbit in a uniform magnetic field was calculated during 10^{4} times the cyclotron period. Then the change of energy was measured by

$$
\frac{\langle\Delta E\rangle}{E_{0}}:=\frac{1}{\left(t_{\mathrm{end}}-t_{\mathrm{start}}\right) E_{0}} \int_{t_{\mathrm{start}}}^{t_{\mathrm{end}}}\left|E(t)-E_{0}\right| \mathrm{d} t,
$$

where E_{0} is the initial value of the energy. Generally, $\langle\Delta E\rangle$ decreases and the accuracy improves as Δt is decreased. On the contrary, the computational time for following 10^{4} cyclotron pe-
riod increases as Δt is decreased. If we require that $\langle\Delta E\rangle / E_{0}$ is less than a critical value, we may have an allowable maximum Δt for each scheme. Since the allowable maximum Δt is different, the computational time to follow 10^{4} cyclotron period is different. Then, we may have an optimum scheme to minimize the computational time. Figure 1 shows the CPU time for obtaining $\langle\Delta E\rangle / E_{0} \simeq 10^{-6}$. As a reference, the result by the 4th-order Runge-Kutta method is also plotted. We observe that the CPU time is minimum for S_{4}. The CPU time for S_{6} is even shorter than that of 4th-order Runge-Kutta method.

Fig. 1: CPU time for the test problem with the allowable maximum Δt for satisfying $\langle\Delta E\rangle / E_{0} \simeq 10^{-6}$ for various orders' schemes $\left(S_{n}\right)$. A result with the 4th-order Runge-Kutta method (RK4) is also plotted for reference. S_{4} was the optimum for obtaining the requested accuracy. S_{6} was even shorter than RK4.

4. Conclusions

The operator decomposition method was developed for a charged particle motion in static electromagnetic field where non-canonical variables were adopted. The higher-order approximation was obtained by the recurrence formula. The developed scheme was tested by integrating simple cyclotron motion for 10^{4} cyclotron period. It was found that the 4th-order scheme was the optimum if we impose a criterion on the relative energy change less than 10^{-6}.

Acknowledgments

This work was supported by KAKENHI Grant No. 23760805.

References

[1] Masuo SUZUKI, Phys. Lett. A 146, 319 (1990).
[2] Masuo Suzuki, Phys. Lett. A 165, 387 (1992).
[3] Haruo Yoshida, Phys. Lett. A 150, 262 (1990).

