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For the analysis of the three-dimensional MHD equilibrium, it is very important to consider the effect of 

the magnetic islands or stochastic regions. In this research, we will develop the three-dimensional MHD 

equilibrium code in order to analyze that exactly. Here, we are developing the two-dimensional 

calculation code applied to an axisymmetric tokamak as the initial step. 

 

 

1. Introduction 

For the analysis of the three-dimensional 

MHD equilibrium, it is important to analyze 

the magnetic islands or stochastic regions. 

Several numerical codes like HINT and PIES 

have been applied for the analysis of the 

three-dimensional MHD equilibrium. The 

features of these codes are shown in table.1. 

HINT ・the cylindrical coordinate system is 

used in the latest version. 

・MHD equilibrium equations are 

solved by the relaxation method. 

PIES ・the magnetic coordinate system is 

used to solve the parallel current. 

・MHD equilibrium equations are 

solved by the iteration method. 

・the magnetic field is obtained by 

Poisson’s equation. 

     table.1 Code feature 

 

Compared with these codes, the features of 

the code in this research are 

a) the cylindrical coordinate system is used.  

b) MHD equilibrium equations are solved by 

the iteration method.  

c) the magnetic field is obtained by 

Biot-Savart law. 

The purpose of this research is to develop 

the three-dimensional calculation code. Here, 

we develop the two-dimensional calculation 

code applied to an axisymmetric tokamak as 

the initial step. In addition, the plasma 

boundary is specified by the limiter.  
 

 

2. Research method 

A simple description of a tokamak 

configuration is given by the MHD equations 

for force balance. 

∇P = 𝐽 × �⃗⃗�           (2.1) 

 𝜇0𝐽 = ∇ × �⃗⃗�           (2.2) 

∇ ∙ �⃗⃗� = 0                  (2.3) 

In our method, these equations are solved 

directly. The iterative procedure employed to 

solve the equations is illustrated in Fig.1. 
The role of each step is as follows.   

   

 
 

 

Fig.1  Code flow chart 
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<Step A> 

The vector product of ‘B’ with Eq.(2.1) leads to an 

expression for the current perpendicular to the 

magnetic field line. 

              𝐽⏊
⃗⃗ ⃗⃗ ⃗ = 

�⃗⃗�×∇𝑝

|�⃗⃗�|2                (2.4) 

In this step, we calculate 𝐽⏊
⃗⃗ ⃗⃗ ⃗ by using Eq.(2.4) .  

 

<Step B> 

We solve the equation of the magnetic field line 

by using Runge-Kutta method. Furthermore, we 

obtain (R,Z) coordinate on magnetic surfaces as the 

function of (Ψ, θ). Those are used in STEP C. 

 

<Step C> 

Taking the divergence of Eq.(2.2) yields 

               ∇ ∙ 𝐽 = 0                (2.5) 

From the Eq.(2.5) 

             ∇ ∙ 𝐽||
⃗⃗⃗⃗  = - ∇ ∙ 𝐽⏊

⃗⃗ ⃗⃗ ⃗               (2.6) 

is obtained obviously. By solving the magnetic 

differential equation, we can obtain the current  

parallel to the magnetic field line. 

 

<Step D> 

Plasma current is obtained by adding 𝐽⏊
⃗⃗ ⃗⃗ ⃗  to 𝐽||

⃗⃗⃗⃗  .  

𝐽𝑝 =  𝐽⏊
⃗⃗ ⃗⃗ ⃗ + 𝐽||

⃗⃗⃗⃗   

The magnetic field generated by the plasma current 

is calculated by Biot-Savart law. Here, we use 

the appropriate Green’s function for a 

toroidal  current source.  

            𝛹𝑝𝑜𝑙
𝑝

 = 2π𝜇0 ∑ 𝐽𝑝 𝐺  

The total magnetic field is obtained by the 

below process.     

          𝛹𝑝𝑜𝑙
𝑡𝑜𝑡𝑎𝑙 = 𝛹𝑝𝑜𝑙

𝑝
 + 𝛹𝑝𝑜𝑙

𝑐𝑜𝑖𝑙 

       𝛹𝑝𝑜𝑙
𝑡𝑜𝑡𝑎𝑙 → 𝐵𝑝𝑜𝑙

𝑡𝑜𝑡𝑎𝑙 (differential) 

 

<Step E>  

Pressure distribution and magnetic field are  

updated in this process. These values are 

substituted into the calculation in StepA.  
 

<Output> 

Magnetic field, the shape of the magnetic surface, 

safety factor, and Pfirsch-Schlüter current are 

calculated.  

 

 

 

 

 

 

 

3. Results 

In this research, the initial input parameters are as 

follows. Plasma and computational domains are set 

as shown in Fig.2. 

 

<Initial input parameters> 

・Pressure distribution 

    P = 3.1× 106 (1 − Ψ)2[Pa] 

・Current distribution 

    σ = 𝜎00 (1 − Ψ)2 

・Total toroidal current 

    𝐼𝑡𝑜𝑡𝑎𝑙 = 4.8 MA 

・vacuum field  

      �⃗⃗�𝑝𝑜𝑙
𝑐𝑜𝑖𝑙 = 0.37 𝑒𝑧⃗⃗ ⃗⃗  [T] 

      �⃗⃗�𝑡𝑜𝑟
𝑐𝑜𝑖𝑙 = 

55.72

𝑅
 𝑒𝑡⃗⃗⃗⃗  [T] 

In these parameters, Ψ is the normalized 

toroidal flux. σ  is < 𝐽 ∙ �⃗⃗� > / < 𝐵2 >.These 

parameters are set so that the value of beta is 

1％ at the magnetic axis.  

 

 
Fig.2  computational domain 

 

Computational domain is a square[2m×2m]. 

The limiter is located at R=2.6, Z=0.  

 

This computational method is now under 

development. The magnetic field, safety factor, the 

shape of the magnetic surface, and Pfirsch-Schlüter 

current will be estimated in the conference. 
 

 

 

 


