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We develop a new linear MHD code satisfying the solenoidal condition for the magnetic field by use of the 
vector potential in the MHD equations. The developed code is applied to the typical LHD plasma and the 
instability analysis is done. The obtained results by the developed code are compared with the results by 
the existing code. 

 
 
1. Introduction 

In the LHD experiments, kinds of fluctuations 
caused by the MHD instabilities are observed in the 
peripheral region [1]. A lot of simulation studies 
based on the real coordinates have been done in 
order to clarify the influence of these instabilities 
on the plasma confinement [2-3]. In many these 
theoretical research, however, the solenoidal 
condition for the magnetic field (divB = 0) is not 
considered, where    B is the magnetic field. If the 
solenoidal condition is not satisfied, the artificial 
velocity is produced. Therefore, it is important to 
satisfy the solenoidal condition in the MHD 
simulation.  

However, it is difficult to consider the solenoidal 
condition since this is not explicitly appeared in the 
MHD equations. In the present study, we develop a 
new linear MHD code satisfying the solenoidal 
condition by use of the vector potential in the MHD 
equations. The developed code is applied to the 
typical LHD plasma. In addition, the obtained 
results by the developed code are compared with 
the results by the existing code. 
 

2. Outline of Developed Code 
    In the developed code, we calculate the time 
evolution of the magnetic field by use of the vector 
potential as,  

      
∂A
∂t

= −η J − Jeq( ) + V × Beq,  (1) 

            B = ∇ × A ,   (2) 

where A is the vector potential, η the resistivity, J 
the current density and V the velocity, respectively. 
The suffix “eq” represents the equilibrium quantity. 
By use of eqs. (1) and (2), the perturbed magnetic 
field is automatically satisfied the solenoidal 
condition to an accuracy of the numerical 
computation. 

The pseudo-plasma model is adopted in the 
developed code. In this model, it is assumed that the 
plasma with the low temperature and high 
resistivity exists in the region between the plasma 
and the vacuum vessel wall. Thus, the calculation of 
the whole simulation region can be done based on 
the same MHD equations. 

The linearized MHD equations are discretized in 
the rotating helical coordinates [4] by the 4th order 
finite difference method. The time evolution is 
calculated by the 4th order Runge-Kutta method. 
 
3. Application of Developed Code to LHD 
Plasma 
3.1 Equilibrium Magnetic Field satisfying the 
solenoidal condition 

We apply the developed code to the LHD plasma 
with the central beta is 2.4% calculated by the 
HINT code [5]. This equilibrium magnetic field is 
not satisfied the solenoidal condition. Therefore, the 
equilibrium magnetic field is recomputed by the aid 
of the projection method to satisfy the solenoidal 
condition. The used equilibrium pressure profile is 
shown in Fig. 1. 
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Fig. 1. The used equilibrium pressure profile on the 
horizontally elongated poloidal plane. 

 

  
 

Fig. 2. Time evolution of the kinetic and  
magnetic energies. 

 
3.2 Initial and Boundary Conditions 

As the initial perturbation, the velocity is 
randomly added. The resistivity is initially given by 
the equilibrium pressure as,  
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and is assumed to be constant in time. Here, P 
denotes the equilibrium pressure. Suffix “max” and 
“min” represent the maximum and minimum value 
on the poloidal plane. ηin is the resistivity on the 
magnetic axis and ηout the resistivity in the 
pseudo-plasma region, respectively. In the present 
study, ηin = 10-6 and ηout = 10-2 are assumed. 

On the boundary, the perfect conducting wall 
and no-slip condition are adopted.  
 
3.3 Instability in Real Coordinates 

The obtained time evolution of the kinetic and 
magnetic energies is shown in Fig. 2. The profiles 
of the perturbed pressure and kinetic energy on the 
horizontally elongated poloidal plane are shown in 
Fig. 3. The growth of the MHD instability can be 
seen from these figures.  

 

3.4 Mode Analysis of Instability 
Based on the equilibrium pressure and the 

magnetic field, the Boozer coordinates [6] is 
constructed by VMEC code [7]. The mode analysis 
has been done by use of this Boozer coordinates. 

 
 

Fig. 3. The profiles of the (a) perturbed pressure    
        and (b) kinetic energy on the horizontally 

elongated poloidal plane. 
 
 
4. Summary 

The linear MHD code based on the vector 
potential has been developed in order to satisfy 
the solenoidal condition for the magnetic field. 
The developed code has been applied to the LHD 
plasma and the instability analysis has been done.  

We will discuss the detail of the developed 
code and the difference between our code and the 
existing codes in the conference.  
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