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In this paper, the influence of two-fluid diamagnetic flows on the interchange mode in the Large Helical 
Device (LHD) plasmas is investigated with the MIPS code [1]. The stabilization/destabilization of the 
linear growth rate of the interchange mode depends on the ratio between the diamagnetic frequency and the 
single fluid growth rate γI. In the regime where 𝛾! < 𝜔!⋆, the two-fluid effects are stabilizing, in agreement 
with the well-known theory. However when 𝛾! > 𝜔!⋆, the two-fluid effects can be destabilizing. 

 
 
1. Introduction 

The magnetohydrodynamic (MHD) stability of 
heliotrons has not yet been fully understood. This 
stability against interchange modes, which are 
pressure driven modes, depends not only on the 
plasma β but also on the horizontal position of the 
vacuum magnetic axis Rax. Increasing Rax makes the 
plasma more stable, however for large Rax the 
confinement of high energy particles, which is 
crucial in a burning fusion plasma, is degraded. 
Thus a trade-off is required to obtain an optimum 
configuration with both good MHD stability and 
good particle confinement. 

In LHD, the original value of Rax is 3.75 m. It 
corresponds to the Mercier criterion [2] which gives 
the stability boundary against high toroidal wave 
number interchange modes, computed based on 
ideal MHD.  Recently, experiments have shown 
that even for smaller values, down to Rax~3.6 m, the 
machine can be operated safely up to β~5% on the 
magnetic axis without major MHD event [3]. 

This means that LHD plasmas are more stable 
than predicted by ideal MHD. Understanding this 
stability is of major importance for the prediction of 
the characteristics of future heliotron fusion 
reactors. It is well known that plasma rotation is 
one of the factors which can improve the stability. 
Including toroidal rotation in a 3D equilibrium code 
is a difficult problem and is not addressed here. We 
carry out a study of the impact of the two-fluid 
diamagnetic flows on the interchange mode 
stability with the MIPS code. The MIPS code 
solves a model close to the two-fluid model of 
Hazeltine and Meiss. We first present the MHD 
model and the simulation conditions in section 2, 
and then describe and discuss the results in section 
3. A conclusion follows in section 4. 

 

2. MHD Model 
The normalized equations for the plasma mass 

density ρ, velocity v, pressure p and magnetic field 
B are as follows: 

 
In these equations, the variable 𝐯 = 𝐄×𝐁/𝐵! +
v∥𝐁/𝑩 represents the MHD velocity, and 
𝐯𝒊⋆ = 𝐁×𝛁𝑝/(𝜌𝐵!)  is the normalized ion 
diamagnetic velocity. The normalization is as 
follows: the magnetic field is normalized to the 
field magnitude on the magnetic axis B0, the mass 
density to the density on the magnetic axis 𝜌!, 𝑡he 
velocity to the Alfvén velocity 𝑉! = 𝐵!/ 𝜇!𝜌! 
and the pressure to 𝜌!𝑉!!. The time is normalized 
to the Alfvén time 𝜏! = 𝑥!/𝑉! , where x0 is the 
distance normalization. In addition, 𝐷!, 𝜒!, ν and 
η are, respectively, the particle and heat diffusion 
coefficients, the viscosity and the resistivity, all 
being constant. As a result of this normalization, all 
the diamagnetic terms are multiplied by the 
normalized skin depth 𝛿! = 𝐾/ 𝑛! , where 
𝐾 = 𝑚!/(𝜇!𝑒!)/𝑥!  is a constant (mi is the ion 
mass and x0 the distance normalization). Thus, 
fixing the diamagnetic parameter amounts to fixing 
the density. When the density varies between 1018 
and 1020 m-3, 𝛿! varies between 0.23 and 0.023. 
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2 Physical model and numerical me-
thods

We use two-fluid MHD equationsl which are very close to
the two-fluid model of Hazeltine and Meiss [8]. The nor-
malized equations for the plasma mass density ⇢, velocity
v, pressure p and magnetic field B are as follows:
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In these equations, the variable v = E⇥B/B2 +vkB/B
represents the MHD velocity, and v?i = B ⇥ rpi/(⇢B2) is
the normalized ion diamagnetic velocity. The normaliza-
tion is as follows: the magnetic field is normalized to the
field magnitude on the magnetic axis B0, the density to the
density on the magnetic axis ⇢0, the velocity to the Alfvén
velocity VA = B0/

p
µ0⇢0, and the pressure to ⇢0V2

A. The
time is normalized to the Alfvén time ⌧A = x0/VA, where
x0 is the distance normalization. In addition, D?, �?, ⌫ and
⌘ are, respectively, the particle and heat di↵usion coe�-
cients, the viscosity and the resistivity. As a result of this
normalization, all the diamagnetic terms are multiplied by
the parameter �i = 1/(!ci⌧A) = di/x0 = K/(x0

p
n0), where

!ci = eB/mi is the cyclotron frequency, di the ion skin
depth and K =

p
mi/(µ0e2) is a constant. It is easy to show

that di ⇠ ⇢i/
p
� where ⇢i is the ion Larmor radius. Since

diamagnetic e↵ects belong to the category of Finite Lar-
mor Radius e↵ects, their introduction introduces time and
length scales associated with the cyclotron motion.

As can be seen from the normalization considerations
above, changing the parameter �i amounts to change either
the size of the machine or the density normalization. The
size of LHD is fixed so that we have simply �i / n�1/2

0 .
Some values of �i corresponding to typical LHD plasma
densities are given in table 1. Typical values of the param-
eters are smaller than 1.

n0 (m�3) 1 ⇥ 1018 1 ⇥ 1019 1 ⇥ 1020

�i 0.23 0.072 0.023

Table 1 – Some values of �i and the corresponding density
normalization n0.

Equations (1-4) require several comments. The model
of Hazeltine and Meiss includes the Hall term in the induc-
tion equation. Here we do not include this term as it has a

limited influence on the dispersion relation even in the case
of current-driven modes such as the kink mode [9] where
the detail of the induction equation are important. In this
case, it has a dramatic e↵ect on the non-linear evolution of
the reconnection [10], but there is not much reconnection
in the case of the interchange mode, though some stochas-
tization of the field lines may occur. Thus we expect to
capture the essential physics of the diamagnetic modifica-
tion without this term.

Then, note the form of the convective derivative of the
velocity in Eq. (2), which is due to the fact that there are
terms in the total stress tensor to compensate for the to-
tal derivative of the diamagnetic velocity plus the inertia
term v?i · rvk, a phenomenon known as the diamagnetic
cancellation [8, 11]. This terms is actually responsible for
the main part of the modification of the dispersion relation,
since the density dynamics, which also contains a diamag-
netic term, is less important and can be neglected in first
approximation.

Finally, an important missing element in the pressure
equation is the parallel heat conductivity �k, which ac-
counts for the fast mobility of the electrons along the field
lines, and should be several orders of magnitude larger than
�?. It is not included for numerical reasons. Its e↵ect is
particularly important in the nonlinear evolution, because
in this case a significant flattening of the pressure profile
can be observed. However, on limited tests, we could
check that the e↵ect on the linear growth rate is rather lim-
ited even for fairly large ratios of �k/�?(?). Also note
that all dissipation coe�cients are constant in the plasma
region, and set to zero in the vacuum region of the sim-
ulation domain, which is defined as the region where the
equilibrium pressure is lower than a given threshold.

The model Eqs. (1-4) is solved on an (R,',Z) mesh
which is cartesian in the poloidal plane (R,Z). The res-
olution of the grid used in this study is 128x640x128.
The code solves the equations by an explicit fourth-order
Runge-Kutta integration. The spatial derivatives are ob-
tained by fourth order finite di↵erences and an upwind
scheme is used for the stabilization of advection terms.
The equilibrium is obtained from the HINT2 code [12].
This code is able to solve the static 3D heliotron equilib-
rium without assuming the existence of flux surfaces. In
the case considered here, the important characteristic of
the equilibrium are Rax = 3.60,(?)

The dissipation coe�cients are set to ⌫ = �? = D? =
10�6, ⌘ = 10�7. With these values and the equilibrium
pressure profile, the most linearly unstable mode is the
m/n = 4/3 mode, where m and n are the poloidal and
toroidal wave numbers. At the ◆ = 3/4 surface, the Mercier
criterion is violated for all the values of � we have studied,
so we are in the ideal instability regime.

In the following section, we carry out a parameter
study limited to �i and �.
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3. Results 
We carried out 2 sets of non-linear simulations in 

the inward-shifted configuration, for which the 
linear growth rate only is studied. The equilibrium 
is obtained with HINT2 code [4], which does not 
assume the existence of flux surfaces. The first set 
(i) has β=2%, whereas the second (ii) has β=1%. 
The single fluid growth rate of the β=2% case is 
approximately 20 times larger than the β=1% case, 
however the diamagnetic frequency 𝜔!⋆ =
2𝜋𝑚𝛿!/( 𝑑𝑙/|𝐯!⋆|), where m is the poloidal mode 
number, scales with β, so there is only a factor of 2 
between the two cases. As a result, using values of 
the density typical of the experiment, 𝜔!⋆  is 
typically smaller than the single fluid growth rate γI 
in case (i), and larger in case (ii). The results are 
compared with the expectation from simplified 
theory, which by replacing ω2 by 𝜔(𝜔 − 𝜔!⋆) in 
the dispersion relation [5], gives 

 
Fig. 1 and Fig. 2 show the results. The most 

unstable single fluid mode is (m/n)=(4/3). In case (i), 
the stabilization and frequency approximately 
follow the theoretical expectation. The yellow point 
in Fig. 1 at the right end of the figure has a different 
mode number, suggesting full stabilizing of the 4/3 
mode for 𝜔!⋆ ≳ 2𝛾! . However, in case (ii), the 
result is totally different from theory, with a 
significant destabilization instead of stabilization. 
Furthermore, the mode rotates in electron direction 
rather than ion.                            S 

 
Fig. 1– Diamagnetic stabilization in case (i), β=2%. The 
agreement with the theoretical expectation is reasonable. 
 

This indicates that the diamagnetic flows may be 
a poor candidate to explain the good stability of the 
experiment. Indeed, when the growth rate is large, a 

very low density is required to obtain a significant 
stabilization (less than 10% reduction of the growth 
rate for n=1019 m-3), and when it is small, the 
diamagnetic effects are destabilizing. This latter 
result is unexpected because diamagnetic effects 
almost always lead to stabilization, though a minor 
destabilization by electron diamagnetic term (not 
used here) has been reported in Ref. [6]. Thus this 
result must still be checked very carefully since 
they may be under resolved. 

   
Fig 2- Diamagnetic destabilization in case (ii), β=1%. 
The simulation and theoretical expectation are extremely 
different. 

4. Conclusion 
Our preliminary results indicate that in the 

inward-shifted configuration, the diamagnetic 
effects are either weakly stabilizing in the regime 
where 𝛾! > 𝜔!⋆ , or destabilizing when 𝛾! < 𝜔!⋆ , 
where 𝜔!⋆ is evaluated with values of the density 
relevant to the experiment. These results must be 
checked by resolution scans, and a more 
sophisticated dispersion relation, applicable to the 
present case, must be derived. This will be very 
helpful in the interpretation of the results. 
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3 Diamagnetic e↵ects on the inter-
change mode stability

The e↵ect of the diamagnetic flow can be decomposed in
two contributions: (i) the shear of the flow and (ii) the mod-
ification of the dispersion relation. Sheared flows are able
to stabilize large scale instabilities because they have a ten-
dency to tear apart the structures which form. However, as
shown in Fig. 1, the profile of the diamagnetic frequency,
!?i , here defined on a  = Cte surface ( is the poloidal
flux) as

!?i =
2⇡m�i⇣H
dl/|v?i |

⌘ ,
is virtually flat in the resonant region close to the ◆ = 1
surface. The shearing rate !s ⌘ r d!?i /dr is much too
small to modify the stability of the mode, because !s ⌧ �
is easily verified in our simulations (� is the mode’s growth
rate).

Figure 1 – Profile of !?i in the simulation, for the case
�i = 0.228 (n0 = 1⇥1018 m�3). The ◆=3/4 and ◆=1 surfaces
are indicated by dashed vertical lines.

Thus any e↵ect of the diamagnetic flow comes directly
from the modification of the dispersion relation due to the
additional two-fluid e↵ects. Physically, the pressure per-
turbation induced by the MHD displacement modifies the
diamagnetic flow, which modifies the energy balance and
hence the stability of the mode. The basic e↵ect is cap-
tured [13] by setting !

⇣
! � !?i

⌘
= ��2

I , where �I is the
growth rate in the absence of diamagnetic flows and ! is
the complex growth rate of the actual mode. This gives the
basic expected diamagnetic stabilization as

� = <(!) = �I

r
1 �
⇣
!?i /2�I

⌘2
(5)

!r = =(!) = !?i /2. (6)

In principle according to Eq. (5), the mode is totally stabi-
lized when !?i = 2�I . Since the amplitude of !?i is fixed

by the density, which can vary, say, in the range 1018�1020

m�3 in the experiments, and the growth rate without two-
fluid e↵ects is determined by �, it is natural to explore the
(!?i , �) parameter space.

Fig. 2 shows the stabilization influence of !?i in the
case where � = 2%. The growth rate and frequency are
plotted as the blue circles and the green diamonds respec-
tively. In this case the single fluid growth rate is larger than
a typical value of !?i . Eqs. (5-6) are also plotted in red
and magenta. In this case the simplified theory is reason-
ably recovered. Quantitatively, the values of the quantity
|�� �(!?i = 0)| which characterizes the stabilization, agree
within 40% until !?i ⇠ 1.5�I . Then the stabilization seems
less e�cient toward the larger values of !?i . The agree-
ment for the rotation frequency is also less good in this
case. The last simulation point on the right of the graph
for !?i = 2.7� (!?i ⌧A = 7 ⇥ 10�2) is represented with a
di↵erent color because its poloidal mode number m = 6 is
changed compared to the usual m/n=4/3. This seems to in-
dicate that the 4/3 mode has been fully stabilized. However
it may mean only that its growth rate was reduced below
that of the new observed mode.

Figure 2 – Diamagnetic-stabilization in the � = 2% case.
The growth rate and frequency of the interchange mode
are compared to the expectation of the theory, which is ap-
proximately recovered. The vertical dashed lines indicate
the correspondance between density and !?i for n = 1018

and n = 1019 m�3.

Fig. 3 shows the same study for the case where � =
1%. In this case, the typical values of!?i are divided by ex-
actly 2 compared to the previous case, but the growth rate
is actually divided by ⇠20. As a result, the typical values of
!?i become much larger than the single fluid growth rate.
As can be seen on the figure, the growth rate now increases
with !?i , a complete change of behaviour compared to the
previous case. The mode is not stabilized at all, and dis-
playing the expectation of the theory shows how di↵er-
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observed mode.
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Figure 3 – Diamagnetic-stabilization in the � = 2% case.
The growth rate and frequency of the interchange mode
are compared to the expectation of the theory, which is ap-
proximately recovered. The vertical dashed lines indicate
the correspondance between density and !?i for n = 1018

and n = 1019 m�3.

Figure 4 – Diamagnetic-stabilization in the � = 1% case.
The theoretical expectation is also shown in red.

Fig. 4 shows the same study for the case where � =
1%. As said above, in this case, the typical values of!?i are
divided by exactly 2 compared to the previous case, but the
growth rate is actually divided by ⇠20. As a result, the typ-
ical values of !?i become much larger than the single fluid
growth rate. As can be seen on the figure, the growth rate
now increases with !?i , a complete change of behaviour
compared to the previous case. The mode is not stabilized
at all, and displaying the expectation of the theory shows
how di↵erent the result is. Contrary to the � = 2% case

discussed above where the mode structure changes when
!?i /�I is larger than 2, indicating stabilization of the 4/3
mode, in the presently discussed � = 1% case, the 4/3
mode is still the dominant mode in the simulation even for
!?i � 2�I .

An other major di↵erence with the previous case is the
mode rotation, which is now in the electron diamagnetic
direction, rather than in the ion diamagnetic direction. The
value is approximately constant, with a weak dependence
on !?i , and a value |!r⌧A| ⇠ 0.01 roughly equal to 8 times
the single fluid growth rate.

The results of the simulations with � = 1.25%, 1.5%
and 1.75% can be summarized as follows. We do not see
any significant increase of the growth rate in these cases.
Rather, a modest stabilization of the 4/3 mode is observed
until roughly !?i = 3�I . Then for higher values of !?i
the dominant mode adopts an m = 5 periodicity. Again
this does not necessarily mean that the initial 4/3 mode has
been stabilized, but that its growth rate has become smaller
than the other m = 5 mode.

The mode rotation is in the electron direction in gen-
eral(?).

4 Discussion

First it should be emphasized that this study is preliminary,
in the sense that so far, rigorous resolution scans have not
been performed yet.

Physically, we can expect that when !?i becomes a
large term, which is measured by comparing it to the sin-
gle fluid growth rate, a theory more sophisticated than the
mere estimate Eqs. (5-6) is required. Such dispersion re-
lations including both resistivity and diamagnetic e↵ects
exist in the case of the internal kink [9] and also in the case
of the tearing mode in tokamaks [14], based on the Glasser
Greene Johnson method which is in principle valid both for
the tearing and the interchange cases. So in principle we
could obtain a dispersion relation applicable to the present
case, which would be very helpful in the interpretation of
the results. This is left for future work.

Nonetheless, it is surprising to see that when the 4/3
mode is stabilized, the mode which takes over has a larger
poloidal wave number, m = 5 or 6. Indeed since !?i / m,
this modes have stronger !?i and we intuitively expect a
stronger stabilization. This will be investigated in the fu-
ture. Note that as mentioned earlier, the 4/3 mode may still
be present, like in the case of the tearing and kink cases,
where full stabilization is also not obtained toward large
values of !?i when a dispersion relation more sophisticated
than !

⇣
! � !?i

⌘
= ��2

I is used [9, 15].
Regarding the motivation of this work which is the

stability of LHD against interchange mode, these results
seem to indicate that the diamagnetic flows are a poor can-
didate to explain a significant stabilization. Indeed, when
the growth rate is strong, the diamagnetic flows do not lead
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observed mode.

Figure 3 – Diamagnetic-stabilization in the � = 2% case.
The growth rate and frequency of the interchange mode
are compared to the expectation of the theory, which is ap-
proximately recovered. The vertical dashed lines indicate
the correspondance between density and !?i for n = 1018

and n = 1019 m�3.
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Figure 4 – Diamagnetic-stabilization in the � = 1% case.
The theoretical expectation is also shown in red.

Fig. 4 shows the same study for the case where � =
1%. As said above, in this case, the typical values of!?i are
divided by exactly 2 compared to the previous case, but the
growth rate is actually divided by ⇠20. As a result, the typ-
ical values of !?i become much larger than the single fluid
growth rate. As can be seen on the figure, the growth rate
now increases with !?i , a complete change of behaviour
compared to the previous case. The mode is not stabilized
at all, and displaying the expectation of the theory shows
how di↵erent the result is. Contrary to the � = 2% case

discussed above where the mode structure changes when
!?i /�I is larger than 2, indicating stabilization of the 4/3
mode, in the presently discussed � = 1% case, the 4/3
mode is still the dominant mode in the simulation even for
!?i � 2�I .

An other major di↵erence with the previous case is the
mode rotation, which is now in the electron diamagnetic
direction, rather than in the ion diamagnetic direction. The
value is approximately constant, with a weak dependence
on !?i , and a value |!r⌧A| ⇠ 0.01 roughly equal to 8 times
the single fluid growth rate.

The results of the simulations with � = 1.25%, 1.5%
and 1.75% can be summarized as follows. We do not see
any significant increase of the growth rate in these cases.
Rather, a modest stabilization of the 4/3 mode is observed
until roughly !?i = 3�I . Then for higher values of !?i
the dominant mode adopts an m = 5 periodicity. Again
this does not necessarily mean that the initial 4/3 mode has
been stabilized, but that its growth rate has become smaller
than the other m = 5 mode.

The mode rotation is in the electron direction in gen-
eral(?).

4 Discussion

First it should be emphasized that this study is preliminary,
in the sense that so far, rigorous resolution scans have not
been performed yet.

Physically, we can expect that when !?i becomes a
large term, which is measured by comparing it to the sin-
gle fluid growth rate, a theory more sophisticated than the
mere estimate Eqs. (5-6) is required. Such dispersion re-
lations including both resistivity and diamagnetic e↵ects
exist in the case of the internal kink [9] and also in the case
of the tearing mode in tokamaks [14], based on the Glasser
Greene Johnson method which is in principle valid both for
the tearing and the interchange cases. So in principle we
could obtain a dispersion relation applicable to the present
case, which would be very helpful in the interpretation of
the results. This is left for future work.

Nonetheless, it is surprising to see that when the 4/3
mode is stabilized, the mode which takes over has a larger
poloidal wave number, m = 5 or 6. Indeed since !?i / m,
this modes have stronger !?i and we intuitively expect a
stronger stabilization. This will be investigated in the fu-
ture. Note that as mentioned earlier, the 4/3 mode may still
be present, like in the case of the tearing and kink cases,
where full stabilization is also not obtained toward large
values of !?i when a dispersion relation more sophisticated
than !

⇣
! � !?i

⌘
= ��2

I is used [9, 15].
Regarding the motivation of this work which is the

stability of LHD against interchange mode, these results
seem to indicate that the diamagnetic flows are a poor can-
didate to explain a significant stabilization. Indeed, when
the growth rate is strong, the diamagnetic flows do not lead
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