

Magnetohydrodynamics Simulations on GPU Clusters with Automatic

Programming

GPUクラスタとプログラム自動生成による磁気流体シミュレーション

Takayuki Muranushi

村主 崇行

Yukawa Institute for Theoretical Physics, Kyoto University

Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 Japan,

京都大学基礎物理学研究所／白眉センター 〒606-8502 京都市左京区北白川追分町

We are developing a new programming language named Paraiso. Its goal is to generate, from mathematical

notations of the algorithms, explicit solvers of partial differential equations on massively parallel and

heterogeneous computers. Current version of Paraiso can generate multicore fluid simulators that are as
fast as hand-written ones, and can translate such codes to GPU programs without any change. It can also

optimize such codes based on benchmarking and simulated evolution. Please have a look at

http://paraiso-lang.org/wiki/ for more detail.

1. Background
The good news is that our computers are

getting even faster and faster. The bad news is

that they’re getting harder and harder to program.
To change a single-CPU program for example to

a program that uses hundreds of GPUs, you need

to add a lot of lines that handle parallelism and
communications. Since such codes are results of

logical necessity that the simulated algorithms are

the same, can we automate the process?

Parallel programming languages are studied for
a long time, but we not yet see a decisive success.

Just one example was a High Performance

Fortran, a very promising approach to introduce a
high-level parallelism in Fortran but, as is

summarized by the project leader [1], it failed.

Perhaps seeking for a single general-purpose
parallel programming language is not a good idea,

because parallel programs need to exploit the

parallelism inherent in each problem domain. We

may need a whole range of different approaches
instead [2].

FFTW [3], ATLAS [4], and SPIRAL [5] are

examples of successful domain-specific
code-generation and auto-tuning framework,

specialized for fast Fourier transformation, linear

algebra, and signal processing, respectively.
Paraiso tries to achieve the similar role for the

domain of partial differential equations solvers.

Similar projects are Liszt [6] and Physis [7].

2. Orthotope Machine and its Instruction Set

The Orthotope Machine (c.f. Fig. 1), the central

concept of Paraiso, is a virtual machine much like
vector computers. Orthotope Machine consists of

Fig.1. The overall design of Paraiso.

registers; each register is a multidimensional array

of infinite size. Arithmetic instructions work

parallelly on these array registers, like adding or
multiplying every pair of element at the same array

index. Other instruction loads from neighbour cells,

thus shifts the entire array by some constant vector.
There is no intention of buiding a real hardware:

Orthotope Machine is a thought object to construct

dataflow graphs representing parallel computation.
Table 1 is the list of all instruction supported by

the Orthotope Machine. The instruction set is

sufficient to implement major portion of

uniform-mesh explicit partial differential equations
solvers. Real programs encode far more diverse

concepts (e.g. various boundary conditions) than

the instruction set encompass. How far we can treat
them formally is future challenge.

S-B1-5

Table I. The instruction set of the Orthotope Machine

 Intensity (arb. units) Te (eV)

Imm load constant value

Load read from named array

Store write to named array

Reduce array to scalar value

Broadcast scalar to array

Shift copy each cell to neighbourhood

LoadIndex get coordinate of each cell

LoadSize get array size

Arith various mathematical operations

3. Builder Monad

Paraiso programs are written in terms of Builder
Monads. Builder monads are elementary code

generators, and by combining them we get larger

code generators.

Math operation such as addition, multiplication,
interpolation and time/space derivatives, can be

defined between builder monads. Operations are

defined in a commutative way; the addition of two
code generators is a code generator that generates a

program that calculates the sum of the two results

of the two programs that would have been
generated by former two code generators. Builder

monads can also become elements of mathematical

structures such as complex numbers and tensors.

All these combined you can program Orthotope
Machine so easily. You describe the algorithm you

want to generate using tensor equations. Then if

you re-interpret the equations as equations of
builder monads, the system of equations

automatically becomes a code generator that

generates the simulator for the system.

4. Code Generation

The Orthotope Machine program is then

translated to native codes such as C++ and CUDA
(Fig. 2). Starting from a parallel dataflow graph that

encompasses the entire program, Paraiso holds

great freedom of program transformation. The
built-in analyzer as well as user can add annotations

to the dataflow graph, changing which data to keep

on memory, which data to re-compute, how the

algorithm is separated into subroutines. Just for
example, a hydrodynamics solver written in Paraiso

has 2
2000

 possible implementations.

At the moment, Paraiso can generate OpenMP
and CUDA program for multicore CPUs as well as

GPUs On 8-core CPU. The speed of OpenMP

version almost matches that of hand-written
simulators widely used. CUDA version is 10 times

faster than them and generated without changing a

line. By adding just 1 or 2 lines of Annotation by

hand, we can make radical changes the code,

resulting in 10 times improvement in the

performance. Paraiso is able to search for optimal
annotation via method based on Exchange Monte

Carlo [8] and genetic algorithms. The experiment is

ongoing as I’m writing this, and I observe
additional 30% optimization. Since this is a

PLASMA conference, I hope I have time to try

writing MHD codes by the conference date.

Fig.2. How the Orthotope Machine codes are

translated into native codes.

Acknowledgments
This project was partially supported by JST,

CREST through its research program: "Highly

Productive, High Performance Application

Frameworks for Post Petascale Computing."

References
[1] K.Kennedy, C.Koelbel, and H.Zima: Proceedings of

the third ACM SIGPLAN conference on History of

programming languages, HOPL III, pages

7–1–7–22

[2] S.Jones: Functional Programming eXchange 2011,

"Managing parallelism: embrace diversity, but

control side effects"

[3] M.Frigo and S.Johnson: Proc. IEEE 93 (2), 216–231

(2005)

[4] R.Whaley, A.Petitet and J.Dongarra: Parallel

Computing, 27(1-2) pp.3--35, 2001.

[5] M.Püschel et al: Proceedings of the IEEE special

issue on "Program Generation, Optimization, and

Adaptation," Vol. 93, No. 2, 2005, pp. 232-275

[6] Z.DeVito et al: ACM/IEEE Supercomputing (2011)

[7] N.Maruyama, T.Nomura, K.Sato and S.Matsuoka:

Supercomputing (2011) pp. 1--12

[8] Hukushima, Nemoto; J. Phys. Soc. Jpn. 65 (1996)

No.6,pp1604-1608

