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We are developing a new programming language named Paraiso. Its goal is to generate, from mathematical 

notations of the algorithms, explicit solvers of partial differential equations on massively parallel and 

heterogeneous computers. Current version of Paraiso can generate multicore fluid simulators that are as 
fast as hand-written ones, and can translate such codes to GPU programs without any change. It can also 

optimize such codes based on benchmarking and simulated evolution. Please have a look at 

http://paraiso-lang.org/wiki/ for more detail. 

 

 

1. Background 
The good news is that our computers are 

getting even faster and faster. The bad news is 

that they’re getting harder and harder to program. 
To change a single-CPU program for example to 

a program that uses hundreds of GPUs, you need 

to add a lot of lines that handle parallelism and 
communications. Since such codes are results of 

logical necessity that the simulated algorithms are 

the same, can we automate the process? 

Parallel programming languages are studied for 
a long time, but we not yet see a decisive success. 

Just one example was a High Performance 

Fortran, a very promising approach to introduce a 
high-level parallelism in Fortran but, as is 

summarized by the project leader [1], it failed. 

Perhaps seeking for a single general-purpose 
parallel programming language is not a good idea, 

because parallel programs need to exploit the 

parallelism inherent in each problem domain. We 

may need a whole range of different approaches 
instead [2]. 

FFTW [3], ATLAS [4], and SPIRAL [5] are 

examples of successful domain-specific 
code-generation and auto-tuning framework, 

specialized for fast Fourier transformation, linear 

algebra, and signal processing, respectively. 
Paraiso tries to achieve the similar role for the 

domain of partial differential equations solvers. 

Similar projects are Liszt [6] and Physis [7]. 

 

2. Orthotope Machine and its Instruction Set 

The Orthotope Machine (c.f. Fig. 1), the central 

concept of Paraiso, is a virtual machine much like 
vector computers. Orthotope Machine consists of  

 
 

Fig.1. The overall design of Paraiso. 

 

registers; each register is a multidimensional array 

of infinite size. Arithmetic instructions work 

parallelly on these array registers, like adding or 
multiplying every pair of element at the same array 

index. Other instruction loads from neighbour cells, 

thus shifts the entire array by some constant vector. 
There is no intention of buiding a real hardware: 

Orthotope Machine is a thought object to construct 

dataflow graphs representing parallel computation. 
Table 1 is the list of all instruction supported by 

the Orthotope Machine. The instruction set is 

sufficient to implement major portion of 

uniform-mesh explicit partial differential equations 
solvers. Real programs encode far more diverse 

concepts (e.g. various boundary conditions) than 

the instruction set encompass. How far we can treat 
them formally is future challenge. 
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Table I. The instruction set of the Orthotope Machine 

 

           Intensity (arb. units)    Te (eV) 

Imm        load constant value 

Load       read from named array 

Store      write to named array 

Reduce     array to scalar value 

Broadcast  scalar to array 

Shift      copy each cell to neighbourhood 

LoadIndex  get coordinate of each cell 

LoadSize   get array size 

Arith      various mathematical operations 

 

3. Builder Monad 

Paraiso programs are written in terms of Builder 
Monads. Builder monads are elementary code 

generators, and by combining them we get larger 

code generators. 

Math operation such as addition, multiplication, 
interpolation and time/space derivatives, can be 

defined between builder monads. Operations are 

defined in a commutative way; the addition of two 
code generators is a code generator that generates a 

program that calculates the sum of the two results 

of the two programs that would have been 
generated by former two code generators. Builder 

monads can also become elements of mathematical 

structures such as complex numbers and tensors. 

All these combined you can program Orthotope 
Machine so easily. You describe the algorithm you 

want to generate using tensor equations. Then if 

you re-interpret the equations as equations of 
builder monads, the system of equations 

automatically becomes a code generator that 

generates the simulator for the system. 

 

4. Code Generation  

The Orthotope Machine program is then 

translated to native codes such as C++ and CUDA 
(Fig. 2). Starting from a parallel dataflow graph that 

encompasses the entire program, Paraiso holds 

great freedom of program transformation. The 
built-in analyzer as well as user can add annotations 

to the dataflow graph, changing which data to keep 

on memory, which data to re-compute, how the 

algorithm is separated into subroutines. Just for 
example, a hydrodynamics solver written in Paraiso 

has 2
2000

 possible implementations. 

At the moment, Paraiso can generate OpenMP 
and CUDA program for multicore CPUs as well as 

GPUs On 8-core CPU. The speed of OpenMP 

version almost matches that of hand-written 
simulators widely used. CUDA version is 10 times 

faster than them and generated without changing a 

line.  By adding just 1 or 2 lines of Annotation by 

hand, we can make radical changes the code, 

resulting in 10 times improvement in the 

performance. Paraiso is able to search for optimal 
annotation via method based on Exchange Monte 

Carlo [8] and genetic algorithms. The experiment is 

ongoing as I’m writing this, and I observe 
additional 30% optimization. Since this is a 

PLASMA conference, I hope I have time to try 

writing MHD codes by the conference date.  

 

 
Fig.2. How the Orthotope Machine codes are 

translated into native codes. 
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