
S-B1-2

Local View Kernels: A New Programming Scheme for Plasma Simulation
Local View Kernels:プラズマシミュレーションの新たな記法

Hiroshi Nakashima

中島 浩

ACCMS, Kyoto University
Yoshida Hon-machi, Sakyo-ku, Kyoto 606-8501, Japan

京都大学 学術情報メディアセンター 〒606-8501 京都市左京区吉田本町

Plasma simulations with PIC need various implementation techniques to run them efficiently on modern
supercomputers having up to many hundreds thousands of CPU cores and occasionally with accelerators
such as GPGPU. Unfortunately, these techniques often architecture dependent and thus your codes must be
revised, drastically sometimes, each time you have a new supercomputer. Our research on local view ker-
nels aims at making you free from these tough and repetitive efforts providing a framework with which you
may concentrate on a particle and a grid point describing what-part of your simulation as a set of local view
kernels, while how-part representing the implementation techniques are automatically attached to the loops
containing the kernels.

1. Introduction Third and finally, the efficiency and effectiveness

of these methods often depends on the architecture
of your supercomputer. This means that when you
or your supercomputer center purchases a new sys-
tem, your code might be modified to cope with the
architectural change. This modification can be not
only adding new techniques but also eliminating old
ones as you should have done for vector-oriented
code whose structure brings poor performance in
executions on scalar parallel systems. Furthermore,
a part for still-applicable techniques could have to
be modified due to the change of architectural pa-
rameters such as cache size and memory/network
bandwidth.

In plasma simulation with PIC method, a huge
number of charged particles interact with electro-
magnetic fields mapped onto a large number of
grid points, governed by Maxwell’s equations and
the Lorentz force law. These hugeness and large-
ness of the simulation essentially require highly
efficient implementations especially exploiting
large-scale parallelism in modern supercomputers.
Therefore, many researches have been conducted
for efficient parallelization including our OhHelp
[1] being the first scalable domain-decomposed
parallelization with dynamic load balancing.

However, such a method is not always easily ap-
plicable to your simulation nor sufficiently im-
proves its performance on a given supercomputer
due to the following reasons. First, even with a
well-designed library implementing the method,
your code should be modified somewhat for the
application. For example, though OhHelp provides
highly sophisticated mechanism not only for load
balancing but also inter-subdomain communica-
tions, you have to add ten or so library function
(procedure) calls and reconfigure the fundamental
time-evolutional loop in the form OhHelp requires.

Our research aims at eliminating the necessity of
these modifications of your code by making it de-
scribed as the set of local view kernels acting on a
small set of data elements, i.e., such as a particle
and/or electromagnetic field vectors defined on a
grid point and its neighbors. The kernels for what-
type descriptions are then assembled together with
how-type library calls and assembling methods such
as cache-aware loop configurations.

2. Local View Kernels

Figure 1 shows a typical code structure of the
main time-evolution loop of fundamental PIC simu-
lators. The loop has calls of four kernel functions
each of which has a loop (or a nest of loops) to scan
all particles or all grid points on which electromag-
netic field vectors are defined. That is, the first two
scans particles to accelerate particles by Lorentz
force (particle_push()) and then to scatter cur-
rent caused by the movements of particles (cur-
rent_scatter()), while the other two solve the

Second, OhHelp takes care of parallel efficiency
but does not concern about sequential performance.
Therefore, it is perfectly up to you to make your
code, e.g., cache-aware for efficient execution on
your scalar MPP or cluster with further modifica-
tion. Note that even if OhHelp and/or other librar-
ies/ tools provide such a means for performance
improvement, it is still up to you to modify your
code so that the means works on the code together
with OhHelped parallelization.

progress of electric field vectors (field_solve_
e()) and magnetic ones (field_solve_b()).

The loop above and four functions are simple but
you have to make various modifications on it for
efficient execution on your parallel supercomputer.
For example, in order apply OhHelp to the code,
you must duplicate four kernel function calls for the
secondary subdomain and particles in it which a
MPI process acts on for load balancing in addition
to its primary ones, add an all-reduce communica-
tion to accumulate the current resulted from all par-
ticles in a subdomain, add two neighboring com-
munications to exchange current and electromag-
netic field vectors, and add a call of OhHelp load
balancer to transfer particles crossing subdomain
boundaries possibly with dynamic load rebalancing,
to have the code shown in Fig. 2.

The code in Fig.2, however, is not very efficient
in terms of its sequential performance, because it
scans a huge one-dimensional array of particles
thrice and then does it for a large three-dimensional
array of electromagnetic field vectors thrice too re-
sulting in a poor temporal locality in memory ac-
cesses. Therefore, you will have to modify the code
further so that, for example, multiple scanning
loops are fused and/or the spatial loops are tiled.

In order to avoid the modifications above which
are often complicated and involve techniques them-
selves applicable to many PIC codes, we introduced
local view kernels acting on each particle or each
electromagnetic field vector as shown in Fig. 3. The
code description is based on the domain-specific
language Physis[3] developed for GPGPU-enabled
coding for stencil computing but is extended to

make it applicable to wider-range of simulation
codes.

As shown in the figure, the Physis-based code
has a structure similar to that shown in Fig. 1, but
the kernel functions are for a particle or a vector.
Therefore, the construction of loops scanning parti-
cles and vectors are up to our code translator which
is also responsible not only of domain-decomposed
MPI parallelization with OhHelp but also of
thread-level parallelization with OpenMP, loop fu-
sion and tiling for efficient memory access with for
good temporal locality, a sophisticated inter-process
communication for the overlapping computation
and communication with improvement of spatial
locality in neighboring communication, and so on.

For example, our preliminary investigation of the
code automatically translated from that with local
view kernels does not only show performance as
good as hand-made OhHelped code but also exerts
40% better performance with threading and loop
fusion. These implementation techniques are made
applicable because the Physis-based description
gives a free-hand to our translator in the construc-
tion of loops and the translator is domain-specific
and thus have knowledge specific to PIC codes
such as the hidden dependency between arrays.

Acknowledgments

The author would like to show his sincere appre-
ciation to Dr. Naoya Maruyama and Dr. Tasuku
Hiraishi for their contributions to our work.

References
[1] H. Nakashima, Y. Miyake, H. Usui and Y. Omura:

Proc. 23rd Intl. Conf. Supercomputing, Ossling, NY,
2009, p. 90.

[2] H. Nakashima: 7th Intl. Cong. Industrial & Applied
Math, Vancouver, 2011.

[3] N. Maruyama, T. Nomura, K. Sato and S. Matsuoka:
Proc. SC11, Seattle, WA, 2011.

for (t=0; t<T; t++) {
 StencilMap(particle_push(...));
 StencilMap(current_scatter(...));
 StencilMap(field_solve_e(...));
 StencilMap(filed_solve_b(...));
}
stencil void particle_push(
 Part p, whole Vec b, whole Vec e){
 double a[3];
 lorentz(p,b,e,a);
 p[0].p[X]+=(p[0].v[X]+=a[X]);
 p[0].p[Y]+=(p[0].v[Y]+=a[Y]);
 p[0].p[Z]+=(p[0].v[Z]+=a[Z]);
}

Fig.3. Main loop with local view kernels

for (t=0; t<T; t++) {
 particle_push(...);
 if(sec) particle_push(...);
 current_scatter(...);
 if(sec) current_scatter(...);
 if(sec) oh_allreduce_field(...);
 oh_exchange_borders(...);
 field_solve_e(...);
 filed_solve_b(...);
 oh_exchange_borders(...);
 oh_transbound(...);
}

Fig.2. Modified main loop

for (t=0; t<T; t++) {
 particle_push(...);
 current_scatter(...);
 field_solve_e(...);
 filed_solve_b(...);
}

Fig.1. Typical main loop of PIC code

