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Diffusion term implicitly appearing in the point vortex solution
for two-dimensional inviscid Euler equation
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Diffusion coefficient implicitly included in the point vortex solution for the two-dimensional inviscid Euler

equation is examined analytically. This diffusive effect arises from a discrete distribution of the vorticity.

The obtained diffusion coefficient includes a position correlation in addition to a time correlation. It can be

regarded as an extension of the well-known Green-Kubo formula.

1. Introduction

To explain a large scale structure forma-
tion, for example, great red spot on Jupiter, eddy at
Naruto, and typhoon, Onsager introduced a concept,
"negative temperature" for the two-dimensional (2D)
point vortex system [1]. If absolute temperature of
a system is negative, there is more possible state at
higher energy than lower energy as the probability is
proportional to exp(-GH)) (H: system energy).

Much research effort has been devoted to
understand the negative temperature state in the
context of 2D turbulence [2-6]. One remarkable re-
sult may be an derivation of a mean field equation
for the point vortex system. This equation is called
sinh-Poisson equation [7]. Later, another member of
Montgomery group reported that a time asymptotic
distribution of 2D Navier-Stokes system at high
Reynolds number reached a state predicted by the
sinh-Poisson equation. This implies that an equilib-
rium state for the viscous Navier-Stokes system is
similar to one for the inviscid point vortex system
and that the point vortex system may have a diffu-
sive effect.

On the other hand, in the review article of
the point vortex method, Leonard said that "It now
appears that using an increased number of point vor-
tices of decreased strength will not yield a converged
solution. ... Ironically, best results with the point vor-
tex method often are achieved by using only a few

vortices with a diffusive time integration scheme.[8]"
This statement also implies a diffusive effect implic-
itly included in the point vortex system.
From these backgrounds, we have started an analyti-
cal estimate of the discussion coefficient for the 2D
point vortex system.

The organization of this paper is as follows.
First, we introduce the point vortex system as a mi-
croscopic solution. Second, the main result of the
diffusion coefficient is presented. At last, we discuss
the result.

2. Euler Equation and Klimontovich Equation
The 2D Euler equation (vorticity equation)
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has an discrete solution:
w,(r,t) = ZQJS(T' — q(t)) )

where u(r,t) and w,(r,f) are the velocity field and the
vorticity field. The solution (2) is called the point
vortex solution. A position and strength of the i-th
point vortex is given by r, = r,(x;, ;) and (.. The
value of (), is either ), or -{), where (), is a posi-
tive constant. The vorticity field is discretized by the
Dirac delta function §(r - r,).

Usually, fluid equation that describes macro-
scopic phenomena has a macroscopic smooth solu-
tion. However, Eq. (2) is not a smooth solution. Thus



we consider the solution (2) is not a solution for
the macroscopic Euler equation but a solution for a
microscopic Euler equation whose form is identical
with Eq. (1). To distinguish the microscopic equation
from the macroscopic equation, we introduce a nota-

tion "hat". A variable with the hat means it micro-
scopic.
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Similar situation can be found in plasma
physics. Time evolution of an exact phase space den-
sity
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is given by the Klimontovich(-Dupree) equation
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Taking an ensemble average of Eq. (5) yields a ki-
netic equation for the averaged phase space density,
for example, Fokker-Planck equation
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and in the inviscid limit, Vlasov equation
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Note that the Vlasov equation is the inviscid equa-
tion in approximation.

We consider that the microscopic Euler
equation that has the point vortex solution corre-
sponds to the Klimontovich equation. The macro-
scopic, inviscid Euler equation corresponds to the
Vlasov equation. There is no corresponding equation
to the Fokker-Planck equation. Thus we derive it
analytically using the Klimontovich formalism [9].

3. Diffusion Coefficient for the Point Vortex Sys-
tem
The starting equation is the microscopic Eu-
ler equation (3). We assume each microscopic vari-
able consists of an averaged macroscopic part and a
fluctuation.

W (r,t)= <d}z(r, t)> + bw,(r,t)
1)+ 6w, (7, 1)
Substituting Eq. (8) into Eq. (3) and averaging it, we
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obtain the following macroscopic Euler equation in-
cluding a diffusion term in the right hand side:

% w (r,t)+V- [u(r, tw, (7, t)} =-V. <61l(1°, t)ow, (r, t)> (9)

To evaluate Eq. (9), we introduce an linearized equa-
tion for the fluctuation.

—éa(r,t)-Vw,(r,t)  (10)
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This equation can be integrated:

60, (r,t) = — [ _drsi(r — (t—T)u(r,),7) (1)
The resulting formula is given by

w (r,t) + u(r,t)- Vw (r,t) = =V - (ij - Vw,)

at
t (12)
f (6u(r,t)6u(r — (t — T)u, 7))

4. Discussion

The resulting equation is an extension of
the well-known Green-Kubo formula. In our result
position correlation due to the macroscopic flow u
is included in addition to time correlation. It may be
possible to evaluate the diffusion term numerically.
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