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The Cauchy condition surface (CCS) method, originally developed for axisymmetric tokamak plasma, has 

been expanded to reconstruct the 3-D magnetic field profile outside the non-axisymmetric plasma in the 

Large Helical Device. The boundary integral equations (BIEs) in terms of 3-D vector potential for field 
sensors, flux loops and points along the CCS are solved simultaneously. With the use of ‘twisted CCS’, the 

reconstructed magnetic field shows acceptable accuracy. The magnetic field line tracing using the 

reconstructed field indicates the outer surface of the stochastic region precisely, and the last closed 

magnetic surface agrees fairly well with the reference one. 

 

 

1. Introduction 
Usually the plasma boundary shape in a nuclear 

fusion device is indirectly estimated with the aid of 

computing from signals of magnetic sensors located 

outside the plasma. Kurihara [1] proposed the Cauchy 

condition surface (CCS) method [1,2]. The method 

focuses on tokamaks, i.e., axisymmetric plasmas, so 

that the analyses can be made in a 2-dimensional 

(2-D), r-z system. On the other hand, 3-D analyses are 

required for non-axisymmetric plasma. In a helical- 

type device such as the Large Helical Device (LHD), 

it is important to consider the following characteristics 

of the plasma current: 

(i) The plasma current itself is much weaker than 

the toroidal current in a tokamak device. 

(ii) The dominant plasma current is the so-called 

Pfirsch-Schülter current, the average of which 

over a magnetic surface is zero. However, this 

current still has a 3-D profile. 

The present work is an extension of the CCS method 

to non-axisymmetric, 3-D fusion plasma. This 3-D 

analysis consumes a huge number of unknowns, and 

then the problem becomes very ill-conditioned. 
 

2. Three-Dimensional CCS Method 
The Cauchy condition surface (CCS), where both 

the Dirichlet and the Neumann conditions are 

unknown, is hypothetically placed in a domain that 

can be supposed to be inside the plasma. In the 

analysis, no plasma current is assumed outside this 

CCS, where in reality plasma current does exist. 

A 3-D Cartesian coordinate system is adopted to 

realize a boundary-only integral formulation. The first 

step of the analysis is to solve the following boundary 

integral equations (BIEs) and obtain the values of the 

vector potential and its derivative on the CCS in such 

a way that they will be consistent with the sensor 

signals [3].  
 

(i) For magnetic field sensor locations i : 
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The operator j

kL  corresponds to a term in B A  

with A  expressed in Cartesian coordinates,  B

jW  is 

the contribution of external coil currents, and *

i
  the 

fundamental solution of the Laplace equation. 
 

(ii) For flux loops: 

For example, the BIE for a loop in the toroidal 

direction is written as 
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with sinx R    and cosy R  . 
 

(iii) For points i  on the CCS (
CCS

 ): 
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The above three types of BIEs are discretized, 

coupled and expressed in a matrix equation form. 

Considering the 10-fold rotational symmetry of the 
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LHD in the toroidal direction, the number of 

unknowns is reduced by a factor of 10. 

The matrix equation to be solved has the form 

Dp g ,                 (4) 

where the solution vector p  contains the vector 

potentials and their normal derivatives on the CCS. 

This equation is solved using the truncated singular 

value decomposition (TSVD) technique. The matrix 

D  is decomposed as T
D UΛV , where U  and T

V  

are orthogonal matrices and Λ  is a diagonal matrix 

with positive singular value or zero components. 

 The regularized solution is given by 
1 T

k

p VΛ U g .            (5) 

Here 
kΛ  means that the singular values smaller than 

k  in Λ  are omitted so that the condition number is 

not larger than 510 . 

Once all the components in p  are known, the 

magnetic fields for arbitrary points can be calculated 

using Eq.(1) again. 
 
3. Use of Twisted CCS 
An axisymmetric CCS having a circular cross section 

is the simplest model [3]. However, the better idea is a 

‘twisted CCS’ whose elliptic cross section rotates with 

the variation in vacuum vessel geometry in the 

toroidal direction. Independent of the toroidal angle, 

this CCS can keep a certain distance from its surface 

to the plasma boundary, so that a reduction in the 

numerical error can be expected. The CCS is divided 

into 48 boundary elements, each of which has 9 nodal 

points.  
 

4. Numerical Examples 
One here considers the plasma with a volume- 

averaged beta being 2.7%   in the LHD. The 

reference field and the sensor signals (126 flux loops 

and 440 field sensors) for this condition had been 

calculated beforehand using the HINT2 code [4]. 

In the greater part of the region outside the LCMS 

(last closed magnetic surface), the absolute errors of 

,rB B  and zB  reconstructed using the 3-D CCS 

method were less than 0.01T.  

      
Fig.1. Field line tracing (1): Peripheral region 

 
Magnetic field line tracing was then carried out. 

Figure 1 shows the Poincaré plots of the field line on 

the r-z plane at 18    (the horizontal elongated 

cross section). The white and the black round symbols 

are the results following the reference field and the 

reconstructed field, respectively. The white closed line 

indicates the LCMS given from the reference field. 

The reconstructed outer surface of the stochastic 

region shows a good agreement with the reference 

one.  
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Fig.2. Field line tracing (2): LCMS 

 
In Fig. 2, the dashed closed line shows the LCMS 

for the vacuum field, i.e., 0%  . This is shifted 

outward when the beta takes the nonzero value, 

2.7%  , i.e., the reference LCMS in this case is 

the solid closed line. The round symbols show the 

results of the trace originating at the same starting 

point as the reference LCMS for 2.7%  , but 

based on the reconstructed field obtained using the 

3-D CCS method. They do not form a sharp closed 

surface, however, the round symbols are distributed 

almost along the reference LCMS for 2.7%  . 
 

5. Conclusion 
A prototype of 3-D CCS method code has been 

developed, in which the formulation is based on the 

3-D distribution of vector potential. A 3-D test 

calculation has been made for non-axisymmetric 

plasma in the LHD. The magnetic field outside the 

plasma can be reconstructed with a fairly acceptable 

accuracy if a large number of magnetic sensors can be 

located outside the plasma. The magnetic field line 

tracing indicates the plasma boundary precisely, and 

the LCMS agrees fairly well with the reference one. It 

should be stressed that they were reconstructed using 

only sensor signals. 
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