Fatigue behavior on welded joint for JT-60SA Vacuum Vessel

JYutaka Yanagi1, Masanao Shibui1, Toshio Kanahara1, Tsutomu Mochida1, Mitsuru Ejiri1, Shiro Asano1, Yusuke K.Shibama2, Kei Masaki2 and Akira Sakasai2

1Toshiba Corporation, 2-4, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
2Japan Atomic Energy Agency, Naka Fusion Institute, 801-1, Mukoyama, Naka, Ibaraki 311-0193, Japan

1. Introduction
The VV of JT-60SA has D-shaped cross section and double-walled structure to circulate boric-acid water between the walls for neutron shielding. It consists of the inner and outer wall reinforced by poloidal ribs as shown in Fig.1 and is made of SUS316L (Co<0.05wt%) [1-2]. The welding of the outer wall on rib is performed by GTAW(TIG) followed by GMAW(MAG) from the outside of double-wall. Since it is difficult to confirm the penetration bead from the inside of double-wall, an incomplete penetration is assumed to be included in this welded joint. In this study, the fatigue test of continuous plug welded joint with an artificial incomplete penetration was performed to investigate the effect of the incomplete penetration on fatigue behavior and fatigue strength.

2. Experiment
2.1. Welded joint and welding conditions
The cross-sectional view of the welded joint is shown in Fig.2. The thickness of the outer wall and rib were selected as 18mm and 22mm, respectively in accordance with the actual VV. The material of the specimen was SUS316L without control of cobalt content. The welding conditions are presented in Table I. The welding condition of GTAW was adjusted to produce incomplete penetrations on both sides of the rib.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GTAW</td>
<td>1</td>
<td>200-300</td>
<td>10-15</td>
<td>Y316L</td>
</tr>
<tr>
<td>GMAW</td>
<td>2-last</td>
<td>140-200</td>
<td>24-30</td>
<td>TS316L-FC1</td>
</tr>
</tbody>
</table>

As the results of PT and RT, defects were not detected in the weld metal.
2.2. Fatigue test

Test configuration and the specimen are shown in Fig.3. The length of the incomplete penetration, which is shown as “a” in the Fig.3, is ~ 3.0mm at the most because of its maximum wrap length between outer wall and rib.

Both sides of the outer wall was supported symmetrically and cyclic load was applied to the rib at the frequency of 5Hz by the triangular wave form. Produced shear stress near the tip of the incomplete penetration was estimated by introducing Tresca stress at the state of plane stress to evaluate fatigue strength. Crack growths were measured in a microscope.

Table II. Fatigue test conditions

<table>
<thead>
<tr>
<th>#</th>
<th>Applied Stress onax [MPa]</th>
<th>Eq.amplitude Saeq [MPa]</th>
<th>Stress ratio R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case1</td>
<td>453.5</td>
<td>222.2</td>
<td>0.02</td>
</tr>
<tr>
<td>Case2</td>
<td>340.1</td>
<td>166.6</td>
<td>0.02</td>
</tr>
<tr>
<td>Case3</td>
<td>226.7</td>
<td>111.1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

As is shown in Table II, three combinations of applied stress and equivalent stress amplitude were selected as the test conditions. As crevice-like incomplete penetration was closed by the residual stress of welding, a crack initiation life was evaluated, instead of a fracture life, as fatigue strength. The cycle when a crack observed in a microscope reached to 0.5mm was defined as crack initiation.

3. Results

The crack propagation through the weld metal is presented in Fig.4. In this case, “a” is ~ 2.5mm. As the crack propagates in mixed mode, curving appears and the bending stress mainly contributes to the crack propagation in this test configuration.

Obtained data of crack initiation lives from six specimens for each test condition are plotted in Fig.5. Compared with the design fatigue curve quoted from JSME S NC1, all data are above the fatigue curve which relates one fourth of the stress amplitude with the number of cycles. Therefore the fatigue strength reduction factor K_f is evaluated about 4.

4. Summary

The fatigue test of continuous plug welded joint was performed to investigate the effect of artificially introduced incomplete penetration on the fatigue behavior and strength.

The fatigue strength reduction factor K_f was evaluated about 4.

Acknowledgements

The authors would like to thank Dr.H.Takano, Dr. S.Mizumaki, Dr.T.Okuyama and Dr.M.Ushijima of Toshiba Corporation for their support of this study.

References