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Analysis of plasma rotation effects on ballooning stability
in magnetospheric plasma confinement
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Magnetohydrodynamics ballooning mode stability of magnetospheric plasma configuration is stud-

ied via time-dependent eikonal formulation. Plasma rotation effects on the ballooning mode sta-

bility can be categorized into four: (i) change of equilibrium which enters the ballooning equation

through the metric elements, (ii) new self-adjoint terms in the ballooning equation originating

from plasma rotation, (iii) time varying wave number due to rotation shear and (iv) non-self-

adjoint terms including first-order time derivative. (i) and (ii) modifies the instability growth rate

in the order square of Mach number, rotation speed divided by thermal speed. (iii) leads to stabi-

lization after long time similar to slab geometry, not in a sense of time average as tokamak case.

(iv) partly works like friction.

1. Introduction

Plasma confinement by magnetospheric con-
figuration was proposed to achieve advanced fuel
nuclear fusion[1], and has been studied in labo-
ratories toward the goal[2,3]. Since these experi-
mental devices have only poloidal magnetic field,
pressure-driven magnetohydrodynamics (MHD)
instabilities might occur. Thus the MHD sta-
bility was studied for limiter [4] and separa-
trix configurations[5]. The separatrix was shown
to have stabilizing effect because of its big
flux expansion[5]. These studies assumed static
plasma equilibria. If a plasma is rotating, the
pressure-driven instability is affected consider-
ably. For example, rotation shear stabilizes bal-
looning mode[6,7] in tokamaks on time average[8-
11]. The stabilization occurs due to energy trans-
fer from unstable to stable modes[11].

These studies mainly focused on plasma rota-
tion shear. However, the magnitude of the rota-
tion can also play a role. In the present paper, we
study how to categorize the plasma rotation ef-
fects on ballooning instabilities by examining the
governing equation. We also point out an impor-
tant difference between the magnetospheric con-
figuration and tokamaks. The conclusions given
below have been verified by numerical simula-
tions, which will be presented elsewhere.

2. Examination of governing equation
We consider a magnetospheric, axisymmet-
ric plasma with only poloidal magnetic field and

toroidal rotation. The equilibrium is described
by the Grad—Shafranov equation including the
toroidal rotation[12],
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Note that all quantities are normalized by their
typical values in this paper. The equilibrium
magnetic field is expressed by B = Vi x Vo,
where ¢ is the toroidal angle. The equilibrium
toroidal rotation speed is given by R(¢). The
ratio of plasma pressure to magnetic pressure
is denoted by [y := 2u0p0/B§, where pg and
By are typical values of pressure and magnetic
field, respectively. The pressure takes the form
p = B() exp[MEQ2(¥) (R?/R2 — 1)] when the
temperature 1" is constant on each magnetic sur-
face. Here My := R.Qo/+/2T(v))/m; is the Mach
number based on thermal velocity of ions. The
ion mass is my, R is the major radius of the in-
ternal ring current, and {2y is the typical value
of toroidal rotation frequency. The plasma rota-
tion changes the source term of Eq. (1) and thus
the solution 9 too. The change of the equilib-
rium, or the metric elements equivalently, enters
the ballooning equation explained below through
the change of its coefficients. Assuming MZ < 1,
we may expand the source term and obtain

dp o 2
a0, =P + O(My), (2)



where the prime denotes 1 derivative. Since the
source term changes in O(M2), the metric ele-
ments also change in O(M§2).

Next we examine the linearized ideal MHD
equation including equilibrium plasma flow[13]:
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where p and v are equilibrium mass density and
flow velocity, respectively. The specific heat ratio
is I'. A displacement of the plasma element from
the equilibrium trajectory is &, defined via a per-
turbed flow velocity v =: 0¢/0t+v-VE+E-Vv.
A perturbed magnetic field is given by B :=
V x (€ xB). The Alfvén Mach number is defined
by My := Qo71a with 7a := L/(Bo//fop) and L
a typical length. While the second term of the
Lh.s. of Eq. (3) introduces anti-self-adjointness,
the r.h.s. of Eq. (3), a generalization of the MHD
force operator[14], is still self-adjoint even includ-
ing the new terms of rotation v. The ratio of the
rotation term to the pressure term is roughly MO2
by the relation Mi = 50M02. Thus we expect an
O(M2) modification of growth rate for pressure-
driven instabilities by the new terms, which is
the same order as the equilibrium change.

For ballooning modes, we adopt the eikonal
formulation based on a large toroidal mode num-
ber n[6,7]. Using n > 1, we express & =
> (n_jé(])> e!™5 | where é(]) represents an en-
velope and S is an eikonal. We assume B-V.S = 0
and 0S/0t+ v - V.S = 0 for the eikonal[8-11], to
obtain S = —¢ + MaQ(¢)t + So(v)). The wave
vector then becomes k := V.S = —V¢ + l%wwj,
and the radial wave number is given by

];Id, = Mt + ko, kyo = S(/) (5)
The t dependence of I;:w expresses the stretch
The rota-
tion shear determines the time scale of i% vari-
ation as (MaA€Y)~'. Note that this k does not
have dynamical lattice symmetry[9] as in toka-

mak case, leading to similar behavior as in slab
geometry[15]. Collecting terms at each order in

n, we obtain é(o) =§B+ B x 1A</B2 and the
coupled wave equations for z = (¢, & )T, called
the ballooning equation. Although the explicit
representation of the equation will be presented

of wave in time by rotation shear.

elsewhere, the abstract form is as follows:
0%x Oz
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where M s and £ are matrices of operators. The
Lh.s. (rhs.) of Eq. (6) comes from the Lh.s.
(r.h.s.) of Eq. (3). The M; term yields an effect
analogous to friction[16]. The operator £ has
O(M¢@) terms as similar to Fr. Most important
point is that these operators include ¢ through
k; Eq. (6) is non-autonomous. However, if we
consider t just as a parameter, we find that £ is
still self-adjoint. Thus we may be able to utilize
the spectral decomposition of £ at each instance
to analyze the solution of Eq. (6). If the time
scale of the dynamics is much faster than that of
/;:w variation, the wave evolves as an eigenmode
of £ at each instance.

Moy + Moz = Lz, (6)
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