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One of the simplest models for describing plasma equilibrium is the single-fluid magnetohydrydynanimc 
(MHD) model under axisymmetry with no fluid flow. However, both non-axisymmetric effects and fluid 
flow can significantly alter plasma equilibrium. A code which can rapidly calculate 3D MHD equilibrium 
with fluid flow is important for future modeling of fusion plasmas. Presently, there are many codes which 
can look at a subset of the physics of interest. Based on those codes, a new code for calculating 3D MHD 
equilibrium with fluid flow is being developed.

1. Overview of MHD Equilibrium
Single-fluid  MHD  equilibrium  is  governed  by 

conservation  of  mass,  Ohm's  law,  force-balance, 
and  Maxwell's  equations  with  quasi-neutrality. 
Closure requires an equation of state, often taken to 
be  an  adiabatic  law.  Consider  a  cylindrical 
coordinate system (R,  , Z), where R is the major 
radius,  is the toroidal angle, and Z is the distance 
above  the  mid-plane.  For  the  case  of  an 
axisymmetric plasma (/ = 0) with no bulk fluid 
flow,  equilibrium is  governed  by the  well-known 
Grad-Shafranov equation [1]:
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where   is  the  poloidal  magnetic  flux,  I is  the 
poloidal current, and p is the pressure. Equilibrium 
depends on the boundary conditions for  , as well 
as the two free functions p() and I().

With the inclusion of fluid flow, equilibrium is 
governed  by  a  generalized Grad-Shafranov 
equation and a Bernoulli equation [2]. Equilibrium 
in this  case depends on five free functions of  the 
poloidal  flux,  which can be taken to be  the  flux-
surface averages of the following quantities: (1) the 
poloidal current I; (2) the pressure p; (3) the density 
n; (4) the electrostatic scalar potential  ; and, (5) 
the stream function , which measures the poloidal 
flow [3].

However, the inclusion of fluid flow can produce 
a  sharp  profile  pedestal  [2-6].  In  the  single-fluid 
MHD model, the pedestal occurs where the poloidal 
flow transitions from sub- to super-poloidal sonic. 
However, because of the small scale-length of the 

pedestal,  the  inclusion  of  finite  Larmor  radius 
(FLR) effects are generally necessary to accurately 
model  the  plasma.  Ito  and  Nakajima  have 
developed a formulation for MHD equilibrium with 
flow  and  FLR effects  using  an  expansion  in  the 
inverse aspect-ratio (), which includes FLR effects 
by the ordering /a ~ , where  is the ion Larmor 
radius and a is the plasma minor radius [6]. In this 
formulation,  equilibrium  depends  on  five  free 
profiles of the lowest-order poloidal flux, which are 
related  to  the  lowest  non-constant  order  of  the 
following quantities: (1) the poloidal current  I; (2) 
the electron pressure pe; (3) the ion pressure pi; (4) 
the  density  n;  and,  (5)  the  electrostatic  scalar 
potential   [7].  However,  because  the  effects  of 
flow  are  included  as  a  linear  perturbation,  the 
pedestal becomes a singularity, and the formulation 
cannot  be  directly  applied  to  trans-poloidal-sonic 
flows.

In 3D cases,  even with no flow, equilibrium is 
complicated by the absence of a guarantee of nested 
flux-surfaces:  islands  and  stochastic  regions  are 
possible. Even in nominally axisymmetric devices, 
magnetic islands may form through tearing modes. 
3D MHD equilibrium without flow depends on two 
free  functions,  which  must  be  constant  on  each 
magnetic field line: (1) the field-line average of the 
parallel  electrical  current  density  divided  by  the 
magnetic  field  strength  <J||/B>B;  and,  (2)  the 
pressure p [8].

2. Overview of Existing Codes
There presently exist many codes for calculating 

MHD equilibrium in a variety of cases. Here, we 
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briefly review three codes: (1) the FLOW code; (2) a 
code for calculations under the formulation by Ito 
and Nakajima; and, (3) the PIES code.

The  FLOW code  is  capable  of  calculating 
axisymmetric  single-fluid  MHD  equilibrium with 
flow  [2].  FLOW handles  the  Bernoulli  equation 
explicitly,  identifying  the  location  of  the  trans-
poloidal-sonic  surface,  and  separates  the 
computational domain in to two regions, with the 
outer region assumed to have super-poloidal-sonic 
flow.

We have written a solver for  reduced two-fluid 
MHD  equilibrium  in  the  large  aspect-ratio 
axisymmetric  limit,  as  per  the  formulation by Ito 
and Nakajima [7]. Because of the limitations of the 
formulation, the code cannot handle trans-poloidal-
sonic flows.

The  PIES code  is  capable  of  calculating  3D 
single-fluid  MHD  equilibrium  without  flow  [8]. 
The algorithm is based on that originally suggested 
by Spitzer  [9]  and  by Grad  and  Rubin  [10],  and 
involves  iterated  direct  integration  of  the 
equilibrium  equations.  However,  there  are 
substantial complexities involved with determining 
the topology of the magnetic field lines, and PIES 
uses a system of magnetic coordinates to effectively 
treat magnetic islands and stochastic field lines. As 
a  consequence  of  the  complications,  PIES is 
prohibitively slow for some applications.

Recently, an external wrapper for the PIES code 
has  been  developed  to  improve  the  speed  of 
convergence [11]. The external wrapper makes use 
of a custom Jacobian-free Newton-Krylov (JFNK) 
numerical solver with adaptive preconditioning and 
a  novel  subspace-restricted  Levenberg-Marquardt 
backtracking algorithm. The details of the solver are 
beyond  the  scope  of  this  document,  but  for 
information  on  JFNK,  see  Ref.  [12],  and,  for 
information on adaptive  preconditioning,  see  Ref. 
[13].

3. Concept for a New Code
We have begun work on a code for calculating 

3D  MHD  equilibrium  with  fluid  flow  and  FLR 
effects.  We refer  to  the  code as  KITES – Kyoto 
ITerative Equilibrium Solver. Based on an analysis 
of  the  governing  equations,  we  believe  that 
equilibrium is governed by the magnetic field-line 
averages of six quantities, which can taken to be the 
following: (1) the parallel current density J||; (2) the 
electron temperature Te; (3) the ion temperature  Ti; 
(4)  the  density  n;  (5)  the  electrostatic  scalar 
potential  ; and, (6) the parallel fluid velocity  v||. 
For a numerical solver, we plan to use the custom 
JFNK solver  which was used with  PIES.  Unlike 

PIES,  we  hope  to  work  entirely  in  physical 
coordinates  without  the  use  of  magnetic 
coordinates: this is expected to reduce the speed of 
the  solver  but  increase  the  robustness  and 
maintainability.

There  appear  to  be  three  major  hurdles  to  the 
development of the code. The first is to have a way 
to accurately and rapidly determine the topology of 
the magnetic field lines. We have already developed 
an algorithm for field line tracing in physical space, 
and the results appear to be competitive with PIES. 
The second major hurdle is accurately solving the 
differential  equation  along  each  field  line;  these 
determine the variation of several quantities along 
each field line.  We hope to be able to do this by 
brute-force  by  following  the  field  lines  for  a 
sufficient  length.  The third hurdle is  handling the 
trans-poloidal-sonic surface. The presence of FLR 
terms may eliminate the pedestal, in which case this 
hurdle  would  be  moot.  Otherwise,  we  would 
attempt a multi-region approach similar to that used 
in the FLOW code.
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