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The three-dimensional (3-D) Cauchy condition surface (CCS) method code is now under development to 

reconstruct the 3-D magnetic field profile in the Large Helical Device (LHD). A new “twisted CCS” has 

been introduced, whose elliptic cross section rotates with the variation in plasma geometry in the toroidal 
direction. Independent of the toroidal angle, this CCS can be placed at a certain distance from the last 

closed magnetic surface (LCMS). With this new CCS, the numerical accuracy in the reconstructed field has 

been improved. Further, the magnetic field line tracing indicates the LCMS more precisely than with the 

use of the axisymmetric CCS. 

 

 

1. Introduction 
The Cauchy condition surface (CCS), where both 

the Dirichlet and Neumann conditions are unknown, is 

placed in a domain that can be supposed to be inside 

the plasma. In the analysis, no plasma current is 

assumed outside this CCS. Instead, the CCS plays the 

same role as the plasma current in causing the field 

outside the plasma. The choice of suitable shape and 

size of the CCS is important to assure the accuracy of 

the reconstructed solution. In the previous work for 

the Large Helical Device (LHD) [1], the shape of the 

3-D CCS was simply assumed to be a torus that has a 

circular cross section. Instead of this axisymmetric 

CCS, one here introduces a new idea named “twisted 

CCS” in order to reduce the numerical error. 
 

2. Outline of the 3-D CCS Method [1] 
Assuming a vacuum field outside the CCS, three 

types of boundary integral equations (BIEs), i.e., for 

magnetic field sensors, flux loops and points along 

the CCS, are given in terms of 3-D vector potential. 

They are solved simultaneously in such a way that 

the vector potential and its derivative on the CCS 

will be consistent with the sensor signals. 

In more detail, the BIEs are discretized, coupled 

and expressed in the matrix equation form as  

Dp g .                 (1) 

Here the solution vector p  contains the vector 

potentials and their normal derivatives on the CCS. 

 In the present work, Eq. (1) is solved using the 

truncated singular value decomposition technique, 

where the condition number is kept to be not larger 

than 510 . Once all the components in p  are known, 

the magnetic fields for arbitrary points can be 

calculated. 
 

3. Twisted CCS 
A larger cross-section of CCS, i.e., a shorter distance 

between the CCS and a sensor position is better for 

receiving the sensor signal information. However, the 

field solution inside the last closed magnetic surface 

(LCMS) given by the CCS method is, so to speak, 

turbulence or chaos that exerts a harmful influence on 

the accuracy of the field profile outside the plasma. 

From this standpoint, a small size of CCS is a good 

choice to avoid the numerical instability. Because of 

this, the cross section of the axisymmetric CCS in the 

previous work [1] had to be set very small, i.e. a circle 

having 0.075m radius. 
 

          
Fig.1. Image of twisted CCS 

 
One here introduces the “twisted CCS” as illustrated 

in Fig.1, whose elliptic cross section rotates with the 

variation in vacuum vessel geometry in the toroidal 

direction. Independent of the toroidal angle, this CCS 

can be placed at a certain distance from the LCMS. A 

reduction in the numerical error can then be expected. 

The ellipse given by 
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rotates 180° clockwise in the poloidal direction when 
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it proceeds 36° counterclockwise in the toroidal 

direction following the 10-fold rotational symmetry of 

the LHD plasma.
 
In this process the variation in the 

coordinates ( , )r z  on the CCS is described as 
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4. Numerical Examples 
One here considers the plasma with a volume- 

averaged   being 2.7%   in the LHD. The 

reference field and the sensor signals (126 flux loops 

and 440 field sensors) for this condition had been 

calculated beforehand using the HINT2 code [2]. 

Test calculations were made for (i) the axisymmetric 

CCS having a 0.075m radius circular cross section, 

and (ii) the twisted one where the values of a  and b  

in Eq. (2) are 0.15m and 0.375m, respectively. 
 
 

 

 

 

 

 

 

 

 

 
 

(a) Axisymmetric CCS 

 

 

 

 
 

 

 

 

 

 

 

 

(b) Twisted CCS 

Fig.2. Distribution of absolute error of rB  

 

Table I. Tendency of the absolute errors of rB
 

 

 Axisymmetric  
CCS 

Twisted 
CCS 

0.01(T)   43.9%  80.3%  

0.005(T)   24.3%  50.8%  

0.001(T)   5.9%  12.1%  

Max. Error 0.042(T)  0.025(T)  

Ave. Error 0.013(T)  0.006(T)  
 
Figures 2(a) and 2(b) show the distributions of 

absolute error of 
rB  respectively obtained using the 

axisymmetric CCS and the twisted CCS, both of 

which are on the r-z plane at 18    (the horizontal 

elongated cross section). The absolute errors in the 

stochastic region are summarized in Table I.  

Based on the reconstructed field, magnetic field line 

tracings were carried out. Figure 3 shows the Poincaré 

plots on the r-z plane at 18   . The dashed closed 

line shows the LCMS for the vacuum field, i.e., 

0%  . This is shifted outward when   takes 

the nonzero value 2.7%  . The reference LCMS 

in this case is the solid closed line. The round symbols 

show the results of the trace originating at the same 

starting point as the reference LCMS for 2.7%  , 

but based on the reconstructed field obtained using the 

axisymmetric CCS. They do not form a sharp closed 

surface, however, the round symbols are distributed 

almost along the reference LCMS for 2.7%  . 

The results based on the twisted CCS are shown in 

Fig. 4. The scatter of the plot points is narrower than 

in the case of the axisymmetric CCS, i.e., the accuracy 

in the reconstruction has been significantly improved. 
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Fig.3. Reconstructed LCMS (Axisymmetric CCS) 
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Fig.4. Reconstructed LCMS (Twisted CCS) 

 
5. Conclusion 

With the use of the twisted CCS rather than the 

axisymmetric CCS, the numerical accuracy in the 

reconstructed field has been improved. Also, the field 

line tracing indicates the LCMS more precisely. 
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