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Three-dimensional atomic-scale cellular model has been developed to reproduce the formation of 
nanoscale or atomic-scale surface ripples during Si etching in chlorine-based plasmas under oblique ion 
incidence.  Numerical results implied that ion incident angle and energy, and neutral-to-ion flux ratios 
play an important role in the formation of surface rippling or groove-like surface roughness.   

 

 

1. Introduction 
Three-dimensional measurement and 

prediction of atomic-scale surface roughness on 

etched features become increasingly important for 

the analysis of line edge roughness (LER) and 

line width roughness (LWR) on feature sidewalls 

during etching; however, the feature profiles are 

too small and/or too complex to measure the 

surface roughness on bottom surfaces and 

sidewalls of the etched features.  To predict the 

surface roughness on atomic/nanometer scale, we 

have developed our own three-dimensional 

atomic-scale cellular model (ASCeM-3D) [1] and 

feature profile simulation.  In this study, 

emphasis is placed on a better understanding of 

the formation mechanisms of atomic-scale 

surface roughness during Si etching in 

chlorine-based plasmas and the relationship 

between plasma parameters (ion incident angle, 

ion incident energy, and neutral-to-ion flux ratio) 

and etched feature profiles, with further attention 

being given to the formation of ripple structures 

on etched surfaces.   

 

2. Modeling 
In the ASCeM-3D model shown in Fig. 1, the 

simulation domain including substrates is divided 

into a number of small cubic cells of L = Si
−1/3

 = 

2.7 Å, where Si = 5.0  10
22

 cm
−3

 is the atomic 

density of Si substrates.  Ions and neutrals are 

injected from the top of the simulation domain with 

a given incident angle i and an isotropic 

distribution, respectively, and etch and/or sputter 

products are taken to be desorbed from etching 

surfaces into microstructural features thermally or 

isotropically with a cosine distribution.  The 

particle transport is analyzed using the 

three-dimensional Monte Carlo (MC) algorithm, 

and the local surface normal or local angle  of 

incidence is calculated by using the four-point 

technique for 5  5  5 neighboring cells (125 cells 

in total) at around the substrate surface cell that the 

ion reaches from the plasma.  Two-body elastic 

collision processes between incident ions and 

substrate atoms are also taken into account to 

analyze the ion reflection on etched feature surfaces 

and penetration into substrates.  The ASCeM-3D 

takes into account surface chemistries based on the 

MC algorithm [2-4], including adsorption and 

reemission of neutrals, chemical etching, 

ion-enhanced etching, physical sputtering, and 

redeposition of etch and/or sputter products on 

feature surfaces.   

 

3. Results and Discussion 

Figure 2 shows etch rates or ERs and roughness 

parameters (RMS) as a function of ion incident 

angle θi, simulated for different incident ion 

energies of Ei = 20, 50, 100, and 200 eV with an ion 

flux i
0
 = 1.0  10

16
 cm

−2
s
−1

 and a neutral-to-ion 

flux ratio n
0
/i

0
 = 100, which are typical of 

high-density plasma etching environments.  

Numerical results indicated that ERs increase with 

increasing Ei and surface roughness becomes larger 
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Fig. 1 Schematic of the ASCeM-3D model. 



 

at higher Ei for θi = 0° or normal incidence of ions.  

In addition, for increased θi or oblique ion incidence, 

surface roughness at Ei = 50 and 100 eV tends to 

become larger than that at higher Ei (= 200 eV).   

In contrast, Fig. 4 shows ERs and the values of 

RMS as a function of ion incident angle θi, 

simulated for different neutral-to-ion flux ratios of 

n
0
/i

0
 = 10, 50, and 100 with Ei = 100.  The 

comparison between the results in Fig. 3 and 4 

indicates that there are different formation 

mechanisms between normal and oblique ion 

incidences, and ion incidence angle θi, ion incident 

energy Ei, and neutral-to-ion flux ratio n
0
/i

0
 play 

an important role in the roughness formation.   

Figure 4 shows the surface features of Si at t = 20 

s after the start of etching in Cl2 plasma for different 

ion incident angles of θi = 0°, 45°, 75°, and 80°, 

simulated with Ei = 100 eV and n
0
/i

0
 = 100.  

Numerical results indicated that as the angle θi is 

increased, nanoscale convex features drastically 

change and the ripple structures of etched surfaces 

occur.  For θi = 0° or normal incidence of ions, the 

surfaces are randomly roughened.  For increased θi 

= 45°, the ripples are formed perpendicular to the 

direction of ion incidence, while parallel to that of 

ion incidence for further increased θi = 75° and 80°.   

The ASCeM-3D model implied that 

neutral-to-ion flux ratio or the neutral particle 

supply to etched surfaces plays a role in the 

formation of surface rippling or groove-like surface 

roughness as important as ion incident angle and 

energy.   
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Fig. 4 Surface features of Si at t = 20 s after the start 
of etching in Cl2 plasma, simulated for different ion 
incident angles of θi = (a) 0°, (b) 45°, (c) 75°, and (d) 
80° with an ion energy Ei = 100 eV and neutral-to-ion 

flux ratios n
0
/i

0
 = 100. 
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Fig. 2 Etch rates and roughness parameters (RMS) as 
a function of ion incident angle θi, simulated for 
different ion incident energies of Ei = 20, 50, 100, 

and 200 eV with a neutral-to-ion flux ratio n
0
/i

0
 = 

100.  Here, RMS is the root mean square roughness.  
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Fig. 3 Etch rates and roughness parameters (RMS) as 
a function of ion incident angle θi, simulated for 

different neutral-to-ion flux ratios of n
0
/i

0
 = 10, 50, 

and 100 with an ion incident energy Ei = 100.  Here, 
RMS is the root mean square roughness.  


