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Highly Accurate Approximate Solutions of Stokes Equation for
Polarimetry of ITER-like Plasmas

ITERZ XL LT HERE T 7 A<IZBIT 5
WD DDA s — 7 2 TR D &8 LR

Ryota Imazawa, Yasunori Kawano and Yoshinori Kusama

AR, TR

BN EALIE S

Japan Atomic Energy Agency
801-1 Mukoyama, Naka, Ibaraki 311-0193, Japan

H AR A FEBA 5806 T311-0193  FRETi M) 111801-1

Polarimetry has been applied in many magnetic confinement fusion devices in order to measure
the magnetic field and the electron density. The Faraday effect rotates the polarization ellipse,
and the Cotton-Mouton effect changes the ellipticity of the polarization ellipse. In the dense
plasmas like ITER plasma, these two effects interfere with each other, and the formulas for the
two effects are no longer valid. In order to comprehend the plasma state from the polarimetric
data, the Stokes equation should be solved. We have found the new equations equivalent to the
Stokes equation and the highly accurate approximate solutions. Our solutions hold even in high
density region (~10*' m™) and exhibit the highest accuracy among approximate solutions.

1. Introduction

Plasma polarimetric measurements have been
installed in many fusion devices. Physical
backgrounds of polarimetry are usually explained
by the Faraday and the Cotton-Mouton effects. In
the former effect the polarization ellipse (and, for
linear polarization, the plane) rotates, while in the
latter effect the ellipticity of the polarization
ellipse changes. Although these two effects are
usually treated as independent events, they
interfere with each other in dense plasmas like
ITER plasma. In such a case, formulas of the
Faraday and Cotton-Mouton effects are not valid,
and the Stokes equation expresses the change of
the polarization state. In this study, we transform
the Stokes equation to the new equations to obtain
the highly accurate approximate solutions.

2. Faraday and Cotton-Mouton Effects

Polarization state can be defined by the
polarization ellipse parameters; the orientation
angle, y (with 0<y<m), the ellipticity angle,
(with -n/4<y<m/4), the auxiliary angle, o (with
0<a<n/2), and the phase shift angle, & (with
0<6<2m). Figure 1 shows the relation between the
polarization ellipse and these parameters. When
one of two effects is small enough, the Faraday
and Cotton-Mouton effects are expressed as:

AlIJ = Cl fZZOl neB"dZ, (1)
A8==C2L21%Bidz )

respectively. Here, z denotes the coordinate axis

along propagation of electromagnetic radiation;
n. denotes the electron density; B; denotes the
component of the magnetic field parallel to z; B
denotes the component of the magnetic field
orthogonal to z; and C; and C, denote the
constant values.

3. Stokes Equation

The Stokes equation expresses the change of
the polarization state and is written as

s = -

o= QXs, 3)

where the vector of S is the reduced Stokes
vector and the vector of  is the vector
associated with the Mueller matrix representing
the optical properties of the plasma[l]. The
reduced Stokes vector, S, is expressed as

Fig. 1. The polarization ellipse and the
polarization parameters (v, y, @, and d).
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The vector of Q is expressed as [1]:
CcmA3neB3 cos2p
Q= —CcmA3n,B?sin2p |, (5)
—2CprA%n,B,

where Cgr and Ccy denote the constant values, A
is the laser wavelength, f is the angle between
the y direction and B, .

4. New Expressions and Approximated Solutions
of Stokes Equation

Although Stokes polarization parameters
(components of S) are observables, they are not
as intuitive as the polarization ellipse parameters.
We transformed the Stokes equation to more useful
equations as follow:

X L33, BE sin 2y + 2B), (6)
d
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When measuring objects are magnetic

confinement fusion plasmas and the probing laser
wavelength is in far-infrared range, the second term
of RHS of eq. (7) is smaller than the first term.
Assuming that the second term is negligible, we
obtain the approximated solution related to the
Faraday effect:

AP = —Cgg fzzol A?n.B,dz. (10)
Substituting eq. (10) into eq. (6) leads to the

approximated solution related to the
Cotton—Mouton effect:
A == [ Wn (p)B, (p)? sin{2, + 2B(p)
-2 f:) Crr ?\Zne(q)B”(q)dq} dp. (11)

5. Comparison among Approximated Solutions

Several approximated solutions to the Stokes
equation have been proposed [2-5]. We have
compared the error of our approximated solutions
and the error of the approximated solution called as
Type 1I [3]. The approximated solutions of Type II
are expressed as:

Y, = —%arctan [{tan (CFR fZZOl AzneB||dz)}_1], (12)
6, = arctan (E), (13)
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Fig.2. Errors of approximated solutions related to the (a)

Faraday and (b) Cotton-Mouton effects as a function of
density.

where
F = Cem?® [, ne(p){By (p)* — By(p)?}
cos {f:) 2CcuA®ne(q)B (q)dq} dp, (14)

G = cos {2Ce [ ne(p)B,(p)dp}. (15)
Egs. (12) and (13) are related to the Faraday and
Cotton-Mouton effects, respectively. Conditions for
comparison of the error of the approximated
solutions are A=10"* [m] B, =1 [T], B, =5
[T], zy —z¢p = 4 [m], and B = 0. Figure 2 shows
the differences between the true values calculated
by Stokes equation and approximated solutions
related to the Faraday and Cotton-Mouton effects as
a function of electron density. Our new solutions
are accurate even in dense plasmas and are more
accurate than Type II. Comparing with other
solutions [2-5], our solutions are the most accurate
in the above condition and need the fewest
assumptions.

6. Conclusions

We have transformed the Stokes equation to
more useful equations using the polarization ellipse
parameters. We have obtained the new
approximated solutions of the Stokes equation for
the Faraday and Cotton-Mouton effect. Our
solutions hold even in high density region (~10*'
m”) and exhibit the highest accuracy among
approximated solutions.
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