Spectroscopic study of hydrogen and helium plasmas
水素・ヘリウム衝突幅射モデルによる発光線解析

Toshimitsu Oda¹, Keiji Sawada¹, Souta Kojima¹, Hirotaka Yashiro¹, Takanori Yashiro¹, Kazunari Taniguchi¹, Hiroto Tsuruta¹, Naomichi Ezumi², Motoshi Goto³

¹Graduate school of Sci. and Tec., Shinshu University 4-17-1 Wakasato,Nagano,380-8553, Japan
²Nagano National College of Technology,716 Tokuma, Nagano 381-8550, Japan
³National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

For LHD plasmas, using atomic helium collisional-radiative model which includes radiation trapping effect, the electron temperature and density have been determined from emission intensity of helium atoms. The population of 3P is dominantly produced by the photo-excitation from the ground state. The contribution of the electron impact transition from the photo-excited 3P to 3D is nearly the same as the direct electron impact excitation from the ground state to 3D. The influence of the photo-excitation on the other excited states is small. For RF hydrogen plasmas at Shinshu University, using molecular hydrogen collisional-radiative model, molecular emission lines have been analyzed.

1. Introduction
Understanding of the reactions of atomic and molecular hydrogen in fusion edge plasmas is essential to improve the performance of the main plasmas and to reduce the heat flux to the divertor wall. In order to investigate the reactions, we have been developing collisional-radiative (CR) models and neutral transport code for hydrogen and helium species. In the models, the electron temperature Te, and density ne as input parameters. In this study, we are developing spectroscopic methods to determine them. First, we will discuss an analysis of helium atom emission intensity of LHD plasmas with a helium CR model, in which radiation trapping is considered. Second, we are constructing a CR model of molecular hydrogen, which will be used to determine Te, ne as well as helium model. We will discuss an application of the model to RF plasmas at shinshu University.

2. Helium atom spectroscopy for LHD plasmas
Determining Te and ne from visible emission line intensities of helium atoms with a CR model is one of widely used methods [1]. However, the radiation trapping effect is neglected in many cases. We have recently proposed a simple and precise method to include the radiation trapping effect in the CR model [2], where the photo-excitation rate from the ground state is included as fitting parameter in addition to Te and ne to reproduce measured line intensities. The method was applied to RF plasmas (ne ~10¹⁶ m⁻³) at Shinshu University. Measured intensities of the helium emission lines were well reproduced by the model, and Te, ne and the photo-excitation rate were successfully determined. However, because of the low ne, the contribution of the photo-excitation to the population density except for the singlet p states was small.

In order to test the method for high ne, we have applied the method to LHD plasmas where the contribution of the radiation trapping to the population density distribution is expected to be not negligible. We have analyzed visible helium line intensities emitted from gas puffed helium atoms in hydrogen plasmas. Figure 1(a) shows measured spectra (Shot No. 98898). Figure 1(b) shows the population densities of the excited states derived from the intensities.

We have estimated the relaxation times of the metastable states 2S and 2S, and have adopted the quasi-steady-state approximation to 2S and 2S. Then the population density of the excited state p, n(p) is given by,

\[n(p) = n_{He} n_e + n_{He} I_{2S} + n_{He} I_{3S} + \cdots \]

where \(n_{He} \) is the ground state atom density. The first term on the right side of eq.(1) is the conventional ionizing plasma component. The second and third terms denote the photo-excitation from the ground
state to $^{2}\Pi$ and $^{3}\Pi$, respectively. $I_{2\Pi}$ and $I_{3\Pi}$ denote the excitation rates to $^{2}\Pi$ and $^{3}\Pi$ from the ground state by the photo-excitation per atom.

Figure 1(b) shows the result of the fitting by eq.(1). The experimental population densities are well reproduced. Obtained T_{e} and n_{e} are 12.7 eV and $5\times10^{18}m^{-3}$, respectively. We can understand that these values reflect T_{e} and n_{e} at a position where emission intensity is maximum along the line of sight. The population of $^{3}\Pi$ is dominantly produced by the photo-excitation from the ground state. For the population of $^{3}\Sigma$, the contribution of the electron impact transition from the photo-excited $^{3}\Pi$ to $^{3}\Sigma$ is nearly the same as the direct electron impact excitation from the ground state. For the other excited states, the contribution of the photo-excitation is small. We could not determine $I_{4\Pi}$ in eq.(1) due to the low intensity of $^{4}\Pi-2^{1}\Sigma$ emission line. However, transitions from $^{4}\Pi$ to other states by electron impact are expected to be small because the population densities of $^{4}\Sigma$ and $^{4}\Delta$ are well reproduced by the model. The excitation from the photo-excited $^{2}\Pi$ to other states is negligible for n_{e} in this plasma.

3. Molecular hydrogen spectroscopy for RF plasmas at Shinshu University

Hydrogen RF plasmas were produced by a device at Shinshu University as shown in Figure 2. Figure 3(a) shows emission lines measured by echelle spectrometer. We have identified the wavelength of molecular hydrogen emission lines using data in Ref. [3]. Figure 3(b) shows emission lines calculated by the CR model of molecular hydrogen. The model reproduced the Fulcher band intensity in the experiment well. We are investigating other molecular line intensities using the model.

![RF Device at Shinshu University](image1)

![Emission lines of an RF hydrogen plasma at Shinshu University](image2)

References