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We investigate the relativistic ponderomotive force in a tightly focused high intensity laser field which takes into 
account the higher order structure of the laser field amplitude. An extended formula for the ponderomotive force 
was derived by using the noncanonical Lie perturbation theory, which is based on the phase space Lagrangian 
formalism. The force is found to depend not only on the gradient of the field amplitude, but also on the curvature 
and its derivative in the higher order originating from the nonlocal particle motion during a laser period. 
 
 
1. Introduction 

The intensity of ultra-short high power lasers 
has reached the range of 1022W/cm2, where 
electrons irradiated by such lasers exhibit 
relativistic characteristics. Recently, efforts 
aiming at higher intensities of 1023-26W/cm2 have 
been made, which is expected to open up an 
entirely new scientific regime [1]. In order to 
achieve such high intensities, reduction of the 
pulse length and/or the spot size is necessary so 
that the ponderomotive force (light pressure) 
becomes of critical importance in determining the 
laser-plasma interaction. 

The ponderomotive force has been derived 
based on the averaging method [2] and is 
explained as the force proportional to the field 
gradient resulting from the first order 
perturbation to the uniform field. In this method, 
terms related to the higher-order derivatives have 
been neglected. However, they could become 
important in the case of strong focusing where the 
laser field amplitude varies within the excursion 
length of the oscillatory particle motion. Namely, 
since the particle experiences nonlocal field 
structure around the oscillation center, the 
average field strength and/or its gradient over the 
oscillation cycle varies in the existence of 
higher-order derivatives of the laser field 
amplitude. In order to investigate such nonlocal 
effects, here, we introduce the noncanonical Lie 
perturbation theory [3]. Based on the perturbed 
phase space Lagrangian, we derive the equations 
of motion of the particle taking into account the 
higher order field structure, i.e., the second and 
third derivatives of the field amplitude. 

 
2. Noncanonical Lie Perturbation Theory 

We introduce the extended phase space expressed 
by canonical variables, zc

μ
 = (t; x,pc) = (t; x, y, z, pcx, 

pcy, pcz), and the corresponding covariant vector, γcμ 
= (−h; pc,0), where h is the relativistic Hamiltonian. 
In this paper, we use Latin indices that run from 1 
to 6 whereas Greek run from 0 to 6. Using these 
notations, the variational principle is expressed as δ 
∫ γcμ dzc

μ
 = 0, where γcμ dzc

μ is referred to as a 
fundamental 1-form. Under an arbitrary coordinate 
transformation zc

μ zμ, the new covariant vector is 
obtained by the scalar relationship γcμdzc

μ = γμdzμ. 
Then, the equation of motion in an arbitrary 
noncanonical coordinate is given by the variational 
principle as dzi/dz0 = Jij (∂γj /∂z0−∂γ0 /∂z j), where J ij 
is the Poisson tensor, Jij = (∂i γj −∂j γi) 

-1. The Lie 
transformation is characterized by the near-identity 
transformation operator L as zμ z’ 

μ = exp(εL) zμ 
[3]. The corresponding covariant vector is 
transformed as γμ γ’μ = exp(− εL) γμ+∂μ S, where S 
is the gauge function. In the Lie perturbation 
method, we utilize the coordinate transformation to 
simply describe the perturbed motion in each order 
by carefully choosing the generator of the 
transformation and the gauge function. 

 
3. Preparatory Transformation 

We consider a single particle motion in the 
relativistic regime irradiated by transversely 
non-uniform high intensity laser field. We express 
the laser field by the normalized vector potential, a 
= qA/mc2, as a = ax(x) sin η ex, where q and m are 
the charge and rest mass of the particle, respectively, 
c is the speed of light, η≡ωt− kz z is the laser phase 
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and ex is unit vector in the x-direction. We introduce 
a smallness parameter, l /L ~ ε, l 2/R ~ ε2, l 3/T ~ ε3, 
where l is the transverse excursion length of the 
particle and L-1 ≡ ax

-1∂x ax, R 

-1 ≡ ax
-1∂x

2ax and       
T 

-1 ≡ ax
-1∂x

3ax are scaling factors of the field 
amplitude variation. 

Since the particle in a uniform laser field exhibits 
the figure-eight motion in the period of η keeping 
the quantity pη ≡pz− γmc constant [4], we at first 
transform the canonical coordinate zc

μ to a new one, 
zμ = (η; x,y,z,px, py, pη), which is noncanonical. Here, 
γ is the relativistic factor and p  =  pc−mca is the 
mechanical momentum. By taking both η and pη as 
coordinate variables, the new Hamiltonian K is 
found to be expressed in a simple form, K        
= − (2kz pη) 

-1(m2c2+ p⊥
2+ pη2). 

 
4. Perturbation Analysis 

Here, we expand the amplitude of the vector 
potential a around the oscillation center of the 
figure-eight orbit, X, as 
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where xXx −≡~ . Here, L, R and T are evaluated 
at X. In the zeroth order of ε, Eq. (1) denotes a 
uniform field. In this order, we treat ax = ax (X) as a 
constant. From the zeroth order 1-form in the 
noncanonical coordinate z 

μ, we can derive the 
equations of motion that yield the analytical 
solution denoting the unperturbed figure-eight 
motion. From the solution, the excursion length l is 
obtained as l = ax /kz ζ0, where ζ0 is the constant 
defined by the initial condition, pη (η = 0) = −mcζ0. 

Next, to investigate the motion of the oscillation 
center, we again transform the coordinate to the 
new one, 
 

( ), ,,,,,; η
µ η pPPZYXZ yx=         (2) 

 
by using the relation Z 

μ = z 

μ − [z 
(0)

 

μ]os., where     
[z (0) μ]os. is the oscillatory part of the zeroth order 
orbit. Note that hereafter we treat ax (X) not as a 
constant but as a variable depending on X. In the 
coordinate Eq. (2), we derive the perturbed 
equations of motion up to the third order of ε based 
on the Lie perturbation method. It is found that the 
covariant vector in the Lie-transformed coordinate 
Z’ 

μ does not depend on the variables Y’ and Z’ so 
that the corresponding variables Py’ and pη’ remain 
constant in all order. For the x-direction, we obtain 
the equation of motion, 
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This equation determines the averaged motion of 
the oscillation center up to the order of ε3. We see 
that, in addition to the first-order ponderomotive 
force proportional to the field gradient, the 
third-order terms related to R -1 and T -1 appear in Eq. 
(3). According to the equation, the ponderomotive 
force is modified to become larger when the second 
and/or third derivative is positive. This is because 
the positive second derivative increases the average 
value of the field strength so that the excursion 
length becomes larger, and positive third derivative 
gives steeper gradient at the oscillation center in 
average, respectively. Note that the second-order 
average force which depends on the second 
derivative, l 

2/R , does not appear. This result 
indicates that, due to the symmetric nature of the 
curvature, the nonlocal effect to the field gradient is 
cancelled during single laser period. We confirmed 
that the same can be said for all the following 
even-order derivatives. 

 
5. Summary 

Based on the noncanonical oscillation-center 
coordinate, we derived the equations of motion up 
to the third order of ε by using the noncanonical Lie 
perturbation theory. We found that, in the third 
order, terms related to the second- and 
third-derivatives of the laser field amplitude are 
added as a modulation to the first-order 
ponderomotive force. These additional forces 
originate from the nonlocal particle motion around 
the oscillation center. The result suggests that the 
control of the higher order field structure is 
important in the case of tight focusing. 
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