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Development of linear and nonlinear mode coupling theory is essential for the stability analysis of

flowing plasmas, where the action-angle representation of linear fluctuation is a fundamental issue in

the context of classical mechanics. Existence of continuous spectrum is however the greatest obstacle

originating from the infinite dimensionality of plasmas. This work has made it possible to perform

the action-angle representation of the contiuous spectrum with the use of appropriate mathematical

techniques. This formalism also clarifies the wave energy for each eigenmode and continuum mode,

where negative energy mode is generally responsible for onsets of various instabilities in flowing plasmas.

Resonance between an eigenmode and a continuum mode can be viewed as a mode coupling and the signs

of their wave energies identify whether the coupling leads to an instability or not. This unified viewpoint

is applicable to various resonant phenomena including the Landau damping, the Alfvén resonance and

the critical layor instability in shear flow.

1. Introduction
Analysis of waves and stabilities in flowing

plasmas is important towards the understand-
ing of efficient magnetic confinement in fusion
devices and unresolved dynamics and trans-
port in astrophysical plasmas. In the presence
of equilibrium flow (e.g., rotation and shear
flow), clear-cut stability criterion is hardly de-
rived because the instability mechanism be-
comes highly involved. For instance, the
Doppler shift of frequency causes both cou-
plings and decouplings among various modes
depending on the flow profile. Such the com-
plicated stability problem cannot be treated
by the energy principle [1] which has been
successful for the stability analysis of static
plasmas. According to classical mechanics
with finite degree of freedom, an instability
is triggered by resonant interaction between
two eigenmodes carrying opposite signs of per-
turbation energies (Krein’s theorem). On the
other hand, since plasmas are infinite dimen-
sional systems, the eigenfrequency of linear
perturbation is often occupied by the contin-
uous spectrum (which corresponds to a sum
of infinite number of singular eigenmodes, or
simply called the continuum mode). Although
it is well known that resonance with the con-

tinuous spectrum strongly affects linear stabil-
ity, even the definition of wave energy for con-
tinuous spectrum has not been so clear except
for the quite limited cases [2], which seems
to prevent further rigorous developments of
linear and nonliner mode coupling theory in
flowing plasmas.

In this work, we direct our attention to
generalizing the notion of “action-angle vari-
ables” to the continuum mode, in order to
derive the energy and momentum carried by
it. Based on this Hamiltonian description, we
have developed systematic methods for clar-
ifying dynamical features (stabilities, effects
of dissipation and nonlinear couplings etc.) of
fluctuations in plasmas. Our achievements are
summarized in three parts as follows.

2. Action-angle representation of con-
tinuum mode
We have established a general method for

deriving the action-angle variables of con-
tinuum modes in dissipationless plasmas by
means of the Laplace transform and the hy-
perfunction theory [3]. This method can de-
compose the energy of linear perturbation (or
the variation H̃ of Hamiltonian) into the sum
of wave energies for eigenmodes and contin-



uum mode;

H̃ =
∑
n

ωnµn +

∫
σ

ωµ(ω)dω,

where ω1, ω2, . . . ∈ C and an interval σ ⊂ R
are respectively assumed to be discrete and
continuous spectra (i.e., mode frequencies). It
is the values µ1, µ2, . . . and the function µ(ω)
that signify the “action variables” for each
mode (the angle variables simply correspond
to the phase angles). While they are equiva-
lent to the so-called “wave action” in the wave
kinetic theory [4] when taking the eikonal (or
short wave-length) limit, our theory is widely
applicable to any eigenmode and continuum
mode for which the wave number is not always
well-defined along the background nonunifor-
mity. As an application of our method, we
have derived the action-angle variables of the
Alfvén and sound continuous spectra in mag-
netohydrodynamics (MHD) and shown that
there exists continuummode with negative en-
ergy [ωµ(ω) < 0] in flowing plasma [5].

3. Stability of resonance between eigen-
mode and continuum mode
Once the energy of the continuum mode

is clarified, we can discriminate linear sta-
bility of resonant interaction between eigen-
mode and continuum mode (in analogy with
Krein’s theory for finite dimensional systems).
We have shown that the interaction leads to
the resonant damping (≃ Landau damping) of
the eigenmode if the continuum mode has the
same sign of energy as the eigenmode, whereas
it leads to the resonant growth (≃ inverse Lan-
dau damping) if the continuum mode has the
opposite sign of energy [3, 6]. In addition, the
negative energy mode tends to be destabilized
by the effect of dissipation. We have adapted
these theories to the stabilizing effect of flow
on the resistive wall mode [7], where the stable
regime appears when the resonant damping
overcomes the dissipation-induced instability.

4. Adiabatic invariance of action vari-
ables
We have shown that the action variables of

eigenmode and continuum mode are invariant
when the mean fields are slowly varying com-
pared with mode frequencies [6]. For exam-
ple, the Landau damping can be understood

as a mode conversion from an eigenmode to
a continuum mode, where the wave action of
the eigenmode µ0 is absorbed into that of con-
tinuum mode

∫
µ(ω)dω. The damping rate is

closely related to the spectral linewidth (equal
to phase mixing rate) of the resultant contin-
uum mode, which can be estimated by the in-
variance of wave-action without invoking the
conventional analytic continuation of the dis-
persion relation [8]. This another viewpoint
of the Landau damping is generically valid for
the coupling between eigenmode and contin-
uum mode in other dynamical systems (such
the Alfvén resonance in MHD and the critial
layor instability in shear flow).

Development of advanced theory of non-
linear mode coupling is also in progress based
on this action-angle formalism. Note that
the conventional wave-kinetic theory and the
weak turbulence theory deal with three-wave
resonance in wavenumber space (which is es-
sentially resonance among plane waves). On
the contrary, our method can precisely discuss
the energy and momentum exchange among
the eigenmodes and the continuum modes,
which is clearly more appropriate for global
(or long wave-length) fluctuation when the in-
homogeneity of mean field is unignorable and
plays a role of free energy source of fluctua-
tion.
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