[Table of Contents]

Plasma and Fusion Research

Volume 7, 1405105 (2012)

Regular Articles


Deuterium Trapping in Rolled Polycrystalline Tungsten Exposed to Low Energy Plasma
Aleksandr RUSINOV, Mizuki SAKAMOTO1), Hideki ZUSHI2), Ryohei OHYAMA, Koichiro HONDA, Ikuji TAKAGI3), Tetsuo TANABE and Naoaki YOSHIDA2)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-0811, Japan
1)
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
2)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
3)
DNE, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
(Received 11 November 2011 / Accepted 13 April 2012 / Published 26 July 2012)

Abstract

Deuterium retention after low energy plasma exposure was investigated using the polycrystalline tungsten samples of which grain elongation directions are parallel and perpendicular with respect to the surface. The deuterium retention calculated from TDS spectra is 2 - 10 times larger in the sample with perpendicular grain elongation direction than in the parallel one for the irradiation temperatures of 450 - 750 K. Removing of the grain elongation anisotropy by the recrystallization resulted in disappearance of the difference in the deuterium retention of the both kinds of samples. No bubbles and no blisters have been observed in the near surface layer of the samples. Plasma irradiation should produce high energy defects that are responsible for the deuterium retention. The difference in the retention of the both kinds of samples seems to be attributed to the different effective diffusion coefficients depending on the grain elongation direction.


Keywords

plasma facing material, deuterium, retention, thermal desorption

DOI: 10.1585/pfr.7.1405105


References

  • [1] R.A. Causey, J. Nucl. Mater. 300, 91 (2002).
  • [2] O.V. Ogorodnikova, T. Schwarz-Selinger, K. Sugiyama et al., J. Appl. Phys. 109, 013309 (2011).
  • [3] V.Kh. Alimov, J. Roth, R.A. Causey et al., J. Nucl. Mater. 375, 192 (2008).
  • [4] K. Tokunaga, M.J. Baldwin, R.P. Doerner et al., J. Nucl. Mater. 337-339, 887 (2005).
  • [5] O.V. Ogorodnikova, J. Roth and M. Mayer, J. Nucl. Mater. 313-316, 469 (2003).
  • [6] O.V. Ogorodnikova, T. Schwarz-Selinger, K. Sugiyama et al., Physica Scripta T138, 014053 (2009).
  • [7] T. Hirai, G. Pintsuk, J. Linke et al., J. Nucl. Mater. 390-391, 751 (2009).
  • [8] A. Rusinov, Yu. Gasparyan, N. Trifonov et. al., J. Nucl. Mater. 415, S645 (2011).
  • [9] O.V. Ogorodnikova, J. Roth and M. Mayer, J. Nucl. Mater. 373, 254 (2008).
  • [10] M. Poon, A.A. Haasz and J.W. Davis, J. Nucl. Mater. 374, 390 (2008).
  • [11] H. Eleveld and A. van Veen, J. Nucl. Mater. 212-215, 1421 (1994).
  • [12] V.Kh. Alimov, H. Nakamura, B. Tyburska-Puschel et al., J. Nucl. Mater. 414, 479 (2011).
  • [13] V.Kh. Alimov, B. Tyburska-Puschel, S. Lindig et al., J. Nucl. Mater. 420, 519 (2012).
  • [14] W.M. Shu, M. Nakamichi and V.Kh. Alimov, J. Nucl. Mater. 390-391, 1017 (2009).
  • [15] T. Venhaus, R. Causey, R. Doerner et al., J. Nucl. Mater. 290-293, 505 (2001).
  • [16] V.Kh. Alimov, J. Roth and M. Mayer, J. Nucl. Mater. 337-339, 619 (2005).

This paper may be cited as follows:

Aleksandr RUSINOV, Mizuki SAKAMOTO, Hideki ZUSHI, Ryohei OHYAMA, Koichiro HONDA, Ikuji TAKAGI, Tetsuo TANABE and Naoaki YOSHIDA, Plasma Fusion Res. 7, 1405105 (2012).