[Table of Contents]

Plasma and Fusion Research

Volume 7, 1405100 (2012)

Regular Articles


Superimposition of Pulses to Steady Arc Discharge in Toroidal Divertor Simulator
Shin KAJITA, Tetsuya UCHIYAMA1) and Noriyasu OHNO1)
EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
1)
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
(Received 4 March 2012 / Accepted 31 May 2012 / Published 26 July 2012)

Abstract

A pulsed discharge was superimposed to a steady state arc discharge in the toroidal divertor simulator NAGDIS-T. The dynamic response of the plasma was observed with an electrostatic probe and fast framing camera. In the first loop plasma, which is close to the plasma source, the density becomes higher in response to the pulsed discharge, and the emission from the plasma significantly increases. On the other hand, in the second loop plasma, where a recombining plasma is formed, the emission from the plasma disappears in response to the pulse. Just after the pulsed discharge, plasma instabilities were formed and they were propagated from the upstream to downstream at the velocity of ∼10 km/s. After the series of pulsed plasma experiments, arc trails were recorded around the cathode area. On a molybdenum cover of the cathode, unipolar arcing was initiated on the surface. It is likely that the pulsed discharge leads to instabilities and initiate the unipolar arcing consequently.


Keywords

NAGDIS-T, pulse superimposition, unipolar arcing

DOI: 10.1585/pfr.7.1405100


References

  • [1] G. Federici, A. Loarte and G. Strohmayer, Plasma Phys. Control. Fusion 45, 1523 (2003).
  • [2] I. Garkusha, A. Bandura, O. Byrka, V. Chebotarev, I. Landman, V. Makhlaj, A. Marchenko, D. Solyakov, V. Tereshin, S. Trubchaninov and A. Tsarenko, J. Nucl. Mater. 337-339, 707 (2005).
  • [3] S. Kajita, S. Takamura, N. Ohno, D. Nishijima, H. Iwakiri and N. Yoshida, Nucl. Fusion 47, 1358 (2007).
  • [4] S. Kajita, S. Takamura and N. Ohno, Nucl. Fusion 49, 032002 (2009).
  • [5] Y. Kikuchi, D. Nishijima, M. Nakatsuka, K. Ando, T. Higashi, Y. Ueno, M. Ishihara, K. Shoda, M. Nagata, T. Kawai, Y. Ueda, N. Fukumoto and R. Doerner, J. Nucl. Mater. 415, S55 (2011).
  • [6] T. Hirai, G. Pintsuk, J. Linke and M. Batilliot, J. Nucl. Mater. 390-391, 751 (2009).
  • [7] P. Stangeby, The Plasma Boundary of Manegic Fusion Devices (IoP Publishing, Bristol and Philadelphia, 2000).
  • [8] N. Ohno, M. Tanaka, N. Ezumi, D. Nishijima, S. Takamura, S.I. Krasheninnikov, A.Y. Pigarov and J. Park, Phys. Plasmas 6, 2486 (1999).
  • [9] G.D. Temmerman, J. Zielinski, S. van Diepen, L. Marot and M. Price, Nucl. Fusion 51, 073008 (2011).
  • [10] K. Yada, N. Matsui, N. Ohno, S. Kajita, S. Takamura and M. Takag, J. Nucl. Mater. 390-391, 290 (2009).
  • [11] M. Nagase, H. Masuda, N. Ohno, S. Takamura and M. Takagi, J. Nucl. Mater. 363-365, 611 (2007).
  • [12] N. Ohno, N. Tanaka, N. Ezumi, D. Nishijima and S. Takamura, Contrib. Plasma Phys. 41, 473 (2001).
  • [13] F. Scotti, S. Kado, A. Okamoto, T. Shikama and S. Tanaka, Plasma Fusion Res. 1, 054 (2006).
  • [14] A. Robson and P. Thonemann, Proc. Phys. Soc. 73, 508 (1959).
  • [15] F. Schwirzke, J. Nucl. Mater. 128-129, 609 (1984).
  • [16] S. Kajita, N. Ohno, Y. Tsuji, H. Tanaka and S. Takamura, J. Phys. Soc. Jpn. 79, 054501 (2010).
  • [17] S. Kajita, S. Takamura and N. Ohno, Plasma Phys. Control. Fusion 53, 074002 (2011).
  • [18] A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York 2008).
  • [19] M. Tokitani, S. Kajita, S. Masuzaki, Y. Hirahata, N. Ohno, T. Tanabe and L.E. Group, Nucl. Fusion 51, 102001 (2011).
  • [20] S. Barengolts, G. Mesyats and D. Leonidovich Shmelev, IEEE Trans. Plasma Sci. 31, 809 (2003).

This paper may be cited as follows:

Shin KAJITA, Tetsuya UCHIYAMA and Noriyasu OHNO, Plasma Fusion Res. 7, 1405100 (2012).