[Table of Contents]

Plasma and Fusion Research

Volume 7, 1403125 (2012)

Regular Articles


Scaling Law of Non-Inductive Current Drive Steady State Tokamak
Kenro MIYAMOTO
Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
(Received 15 May 2012 / Accepted 8 July 2012 / Published 13 September 2012)

Abstract

In non-inductive current drive steady state operation of tokamak reactor, it is desirable that the Qcd value determined by the plasma current balance is the same as the Q value determined by the plasma energy balance [Progress in the ITER Physics Basis, Nucl. Fusion 47, S285 (2007)]. The more quantitative scaling laws of Q and Qcd are derived from the scaling laws of electron density, beta ratio, energy confinement time and current drive efficiency. The reduced scaling laws of Q and Qcd are examined by comparison with the data of the standard scenario of inductive operation and the reference scenario of non-inductive operation of ITER. Sensitivities of Q and Qcd on the plasma parameters are studied and requirement is examined to satisfy Qcd ≈ Q.


Keywords

steady state tokamak reactor, non-inductive current drive, ITER, current drive efficiency

DOI: 10.1585/pfr.7.1403125


References

  • [1] Progress in the ITER Physics Basis, Nucl. Fusion 47, S285 (2007).
  • [2] ITER Physics Basis, Nucl. Fusion 39, 2137 (1999).
  • [3] ITER Physics Basis, Nucl. Fusion 39, 2175 (1999).
  • [4] K. Miyamoto, J. Plasma Fusion Res. 76, 166 (2000). K. Miyamoto, Plasma Physics for Controlled Fusion (Science and Culture Pub, 2012) http://www.shinanobook.com/genre/book/1481
  • [5] T. Takizuka and M. Yamagiwa, JAERI-M 87-006 (1987) Japan Atomic Research Institute.
  • [6] Technical Bases for the ITER-FEAT Outline Design (Draft for TAC Review) 1999; Y. Shimomura et al., 18th IAEA Fusion Energy Conf. (Sorrento) ITER/1, 2000.
  • [7] N.J. Fisch, Phys. Rev. Lett. 41, 873 (1978).
  • [8] C.F.F. Karney et al., Phys. Fluids 22, 1817 (1979).
  • [9] N.J. Fisch et al., Phys. Rev. Lett. 45, 720 (1980).
  • [10] T. Ohkawa, Nucl. Fusion 10, 185 (1970).
  • [11] D.F.H. Start, Plasma Phys. 22, 303 (1980).
  • [12] K. Okano, Nucl. Fusion 30, 423 (1990).
  • [13] M. Shimada et al., 19th IAEA Fusion Energy Conf. (Lyon) CT-2, 2002.
  • [14] T. Fujita et al., Phys. Rev. Lett. 87, 085001 (2001).
  • [15] K. Oikawa, Nucl. Fusion 41, 1575 (2001).
  • [16] T. Suzuki et al., Nucl. Fusion 44, 699 (2004).
  • [17] C.C. Petty et al., Nucl. Fusion 42, 1366 (2002).
  • [18] R.W. Harvey et al., Nucl. Fusion 37, 69 (1997).

This paper may be cited as follows:

Kenro MIYAMOTO, Plasma Fusion Res. 7, 1403125 (2012).