[Table of Contents]

Plasma and Fusion Research

Volume 7, 1402019 (2012)

Regular Articles


Measurement of Ion Temperature and Toroidal Rotation Velocity Using Charge Exchange Recombination Spectroscopy in Heliotron J
Hyunyong LEE, Shinji KOBAYASHI1), Takayuki MINAMI, Shinichiro KADO2), Tohru MIZUUCHI1), Kazunobu NAGASAKI1), Hiroyuki OKADA1), Takashi MINAMI1), Satoshi YAMAMOTO1), Sadayoshi MURAKAMI3), Yuji NAKAMURA, Kiyoshi HANATANI1), Shigeru KONOSHIMA, Shinsuke OHSHIMA4), Kiyofumi MUKAI, Tasuku KAGAWA and Fumimichi SANO1)
Graduate School of Energy Science, Kyoto University, Uji, Kyoto, 611-011, Japan
1)
Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-011, Japan
2)
Graduate School of Engineering, University of Tokyo, Bunkyo, Tokyo, 113-8656, Japan
3)
Graduate School of Engineering, Kyoto University, Yoshida, Kyoto, 606-8501, Japan
4)
Pioneering Research Unit for Next Generation, Kyoto University, Uji, Kyoto, 611-011, Japan
(Received 2 August 2011 / Accepted 23 January 2012 / Published 1 March 2012)

Abstract

This paper describes design and installation of a charge-exchange recombination spectroscopy (CXRS) system in Heliotron J. In this system, two tangential-heating neutral beams are used for plasma heating as well as the diagnostic beams. The sightlines are set to be parallel to the magnetic axis to achieve high spatial resolution. The spatial resolution is Δ ⟨r/a⟩ ∼ 0.05 for a measurement area of 0.37 < ⟨r/a⟩ < 0.79. We adopted a Czerny-Turner monochromator, whose dispersion is 0.74 nm/mm. We applied this system is applied to an NBI plasma and the time evolution of the ion temperature and the toroidal rotation velocity profile are successfully obtained.


Keywords

ion temperature, toroidal rotation velocity, CXRS, NBI, Heliotron J

DOI: 10.1585/pfr.7.1402019


References

  • [1] D.J. Ward et al., Phys. Plasmas 2, 1570 (1995).
  • [2] Y. Koide et al., Rev. Sci. Instrum. 72, 1 (2001).
  • [3] R.J. Fonck et al., Phys. Rev. A 29, 6 (1984).
  • [4] M.G. Hellermann et al., Rev. Sci. Instrum. 61, 11 (1990).
  • [5] K. Ida et al., Rev. Sci. Instrum. 71, 6 (2000).
  • [6] M. Yoshinuma et al., Plasma Fusion Res. 3, S1014 (2008).
  • [7] J. Baldzuhn et al., Rev. Sci. Instrum. 68, 1020 (1997).
  • [8] J.M. Carmona et al., Rev. Sci. Instrum. 77, 10F107-1 (2006).
  • [9] M. Kaneko et al., J. Plasma Fusion Res. SERIES 7, 77 (2006).
  • [10] M. Wakatani et al., Nucl. Fusion 40, 569 (2000).
  • [11] M. Yokoyama et al., Nucl. Fusion 40, 261 (2000).
  • [12] L. Yao, New Developments in Nuclear Fusion Research (Nova Sci. pub, 2006) pp.61-87.
  • [13] S. Kobayashi et al., J. Plasma Fusion Res. SERIES 9, 59 (2010).
  • [14] S. Murakami et al., Trans. Fusion Tech. 27, 259 (1995).
  • [15] OPEN-ADAS database, http://open.adas.ac.uk
  • [16] K.H. Burrell et al., Am. J. Phys. 58, 2 (1990).
  • [17] H.C. Burger and H.B. Dorgelo, Z. physik 23, 258 (1924).

This paper may be cited as follows:

Hyunyong LEE, Shinji KOBAYASHI, Takayuki MINAMI, Shinichiro KADO, Tohru MIZUUCHI, Kazunobu NAGASAKI, Hiroyuki OKADA, Takashi MINAMI, Satoshi YAMAMOTO, Sadayoshi MURAKAMI, Yuji NAKAMURA, Kiyoshi HANATANI, Shigeru KONOSHIMA, Shinsuke OHSHIMA, Kiyofumi MUKAI, Tasuku KAGAWA and Fumimichi SANO, Plasma Fusion Res. 7, 1402019 (2012).