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Implication of Parallel Velocity Gradient-Driven Instability with
Hydrodynamic Electrons to SOL Width
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Herein, a new aspect of the parallel velocity gradient (PVG)- driven instability is explored. We present its
linear stability analysis and investigate the transport properties of the instability, focusing on a specific electron
motion called hydrodynamic. In the realm of hydrodynamic electrons, electron motions across the magnetic field
are much faster than those along the magnetic field. This electron motion plays an important role in fluctuation
transport. This analysis reveals that the PVG convective cell is newly excited, and its feature of particle transport
is favorable, since the particle pinch by PVG with adiabatic electrons disappears.
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1. Introduction
Today, heat load toward divertors is one of the most

crucial problems in fusion sciences. This heat load man-
ifests in two types of phenomena. One is an abrupt heat
load, well known as edge localized modes (ELMs) [1–3],
and the other is the steady heat load. As the studies
on ELM suppression progress [4], steady heat loads have
gained attention these days in the context of the protection
for the plasma-facing components via SOL broadening.
Recently, the Eich scaling law satisfactorily described the
SOL heat load width [5, 6], and Goldston [7] propounded
a heuristic drift (HD) model for it, which perfectly fits the
data of H-mode discharges. As is well known, this model
is solely based on the drift motion by magnetic fields, the
grad B and curv B drifts [7]. In this scaling, the power de-
cay length is poorly estimated as small. For example, the
length for ITER is approximately 1mm, which prompted us
to consider its handling. As previously mentioned, turbu-
lence is not considered in the HD model. Therefore, turbu-
lence should be a key SOL width handling element. Fluc-
tuations are observed in SOL [8], which can drive fluxes
from experimental perspective [9]. In this paper, we will
demonstrate the behaviour of one of such fluctuations for
SOL broadening.

Considering local fluctuations is important because
they can play an important role in advanced operations,
such as internal transport barriers with low confinement
mode edge [10]. The contribution of turbulence to the
SOL width is estimated using simple heuristic considera-
tions [11]. Additionally, theoretical considerations are nec-
essary to further explain its physical mechanism [12].

Parallel velocity along magnetic field lines in SOL can
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become subsonic in several devices [13, 14]. These flows
lead to a radial gradient, which can drive instability, here-
after called as parallel velocity gradient (PVG) instability
[15]. Lately, PVG has been studied theoretically [16–19],
experimentally [20, 21] and using simulations [22, 23]. In
[18,21], it is reported that PVG contributes to inward parti-
cle pinch, which can be disadvantageous for SOL broaden-
ing. However, PVG may change its transport feature in the
future devices, such as in ITER. This is because ITER has
longer major and minor radii, which affect the time scales
of electron motions. Considering resistive drift wave as an
example, excited fluctuations can be changed using elec-
tron motions based on the size of devices [24]. Particle
transport changes its intensity, and especially, heat trans-
port can change its direction. This alteration is governed
by electron motions, which are electron drift frequency
and electron parallel diffusion. Hence, we focused on PVG
with altered electron motion.

We aim to reveal the altered transport features of PVG
using specific electron motion based on the size of the de-
vices. These features are described using a quasi-linear
framework and are discussed in Sec. 2. The discussion and
summary are presented in Sec. 3.

2. Model and Linear Analysis
With the aim to describe transport phenomena in

the SOL region in fusion plasmas, we use the extended
Hasegawa-Wakatani equation with parallel flow [17–19,
25]. As previously proposed, to demonstrate the fluctua-
tion that we focus on, this model is represented as a sim-
plified fluid description.

d
dt
ρ2

s∇2
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eϕ
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where d/dt = ∂t + (c/B)ẑ×∇ϕ · ∇ is the total derivative in-
cluding the nonlinear E × B convection, cs is the ion sound
velocity, ρs is the ion sound larmor radius, D∥ = v2the/νei is
the parallel electron diffusion, ϕ is the electrostatic poten-
tial, n is density, and v∥ is the parallel flow. The system is
defined as a cylindrical system. The correspondence ∥↔ z
and⊥↔ (r, θ)↔ (x, y) in the cylindrical coordinate system
is understood hereafter.

To elucidate the instability caused by parallel flow
shear, we obtain a set of equations by linearization and
Fourier analysis, as shown below:

iωρ2
sk2
⊥ϕ̂k = −D∥k

2
∥ (n̂k − ϕ̂k), (1)

− iωn̂k + iω∗eϕ̂k + ik∥ṽi,k = −D∥k
2
∥ (n̂k − ϕ̂k), (2)

− iωṽi,k −
c
B

ikyϕ̃k⟨vz⟩′ = −
e

mi
ikzϕ̃k. (3)

Here, it is useful to denote normalized quantities by
ñe/n0 → n̂ and eϕ̃/Te → ϕ̂. ⟨. . .⟩ denotes the averaged
quantities over θ and ∥ direction. ω∗e = kyρs(cs/Ln) is the
electron drift frequency and L−1

n = −⟨n⟩′/n0 is the scale
length of the density. Here . . .′ represents the radial dif-
ferential. We assume that the wavelength of the fluctua-
tion is shorter than the typical scale length of equilibrium
quantities. Subsequently, the density and parallel velocity
responses are obtained as follows:

n̂k =

(
ω∗e
ω
− ρ2

sk2
⊥

)
ϕ̂k +

k∥
ω
ṽ∥,k, (4)

ṽi,k = cs

(
csk∥
ω
−

kyρs⟨vz⟩′
ω

)
ϕ̂k. (5)

Substituting Eq.(4) and Eq.(5) into Eq.(1), we obtain
the following general dispersion relation:

−i
ρ2

sk2
⊥

D∥k2
∥
ω = − (1 + ρ2

sk2
⊥)

+
ω∗e
ω
+

k2
∥ c

2
s

ω2

(
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ρsky⟨vz⟩′

k∥cs

)
. (6)

This dispersion relation Eq.(6) has a general form, which
includes several fluctuations, drift wave (lower left), drift
convective cell (lower right), and PVG (upper left), as
shown in Fig. 1. Because Eq.(6) is a cubic equation for
ω, we can use a well-known algebraic method to solve this
cubic equation, which is called the Cardano’s fomula [26].
Solving Eq.(6) using the Cardano’s formula, we will sys-
tematically obtain the following:

ω = u − p
3u
− A

3
, (7)

where

u =

−q
2
± 1

2

√
q2 +

4
27

p3


1/3

,

Fig. 1 Schematic graph : region corresponding to each fluctu-
ation. Vertical axis corresponds to the ratio of ⟨vz⟩′ to
cs/Ln and parallel axis corresponds to the ratio of ω∗e to
k2
∥D∥.
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Equation (7) obviously contains other fluctuations shown
in Fig. 1. Taking drift wave as an example, we can de-
rive the dispersion relation of drift wave from Eq.(7) using
ω∗e/D∥k2

∥ ≪ 1 as the expansion parameter and neglecting
the flow shear. Then, we obtain:

ωDW = u − p
3u
− A

3

≈ i1/3

3
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where O(ω∗e/D∥k2
∥ ) ≪ 1 is assumed. With flow shear,

the dispersion relation of PVG (upper left in Fig. 1) can
be clearly obtained from Eq.(7).
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2.1 PVG convective cell
In this section, we discuss the fluctuation with the hy-

drodynamic electron response, i.e., ω∗e/D∥k2
∥ ≫ 1. In this

case, the electron motion resembles that of a quasi-two-
dimensional vortex perpendicular to the toroidal plane.
The expansion parameter in this case is D∥k2

∥ /ω∗e ≪ 1.
When this expansion parameter becomes valid, this limita-
tion corresponds to a small k∥. The assumption regarding
the wave number parallel to the magnetic field line is re-
garded as k∥ = 1/qR. qR is the product of the safety factor
q and major radius R. Taking the safety factor as q95 ∼ 3,
with some simplifications, the electron response shall be
proportional to the size of devices. In [24], this hydrody-
namic electron regime can be easily found in large devices,
e.g., ITER. Accordingly, these limitations relevant to the
parallel flow shear and electron motion laid the foundation
for the desired discussion.

Further, we show the dispersion relation for the PVG
convective cell. The PVG convective cell is the new regime
of this system. In addition, we demonstrate modes in
the PVG convective cell. Using the hydrodynamic elec-
tron regime k2

∥D∥/ω∗e ≪ 1 as the expansion parameter in
Eq.(7), we obtain:

ω ≈
−i

k2
∥D∥k∥cskyρs⟨vz⟩′

ρ2
sk2
⊥

1/3

. (8)

Furthermore, we can directly derive Eq.(8) from
Eq.(6) using the same assumption as above. In a direct
comparison between the first term in the LHS and last term
in the RHS of Eq.(6), we can obtain the same dispersion
relation as Eq.(8).

−i
ρ2

sk2
⊥

D∥k2
∥
ω ∼ −

k∥csρsky⟨vz⟩′

ω2
.

Moreover, we can derive this dispersion relation from
Eq.(1), Eq.(2) and Eq.(3). Assuming ⟨vz⟩′ is sufficiently
large, the velocity fluctuation is activated only by the par-
allel flow shear in Eq.(5).

ṽi,k ∼ −
cskyρs⟨vz⟩′
ω

ϕ̂k. (9)

Substituting this into Eq.(2), the density fluctuation is
found to be strongly activated by the parallel flow shear.

n̂k ∼ −
k∥cskyρs

ω2
⟨vz⟩′ϕ̂k. (10)

Further, we determine the behavior of the PVG convective
cells from the vorticity equation, Eq.(1). Its expression cor-
responds to Eq.(8). Thus, vorticity is strongly affected by
the parallel flow shear.

We now focus on the value of (±i)1/3. Here, the sign
is determined by the sign of k∥ky⟨vz⟩′. We take positive
sign for k∥ky⟨vz⟩′ < 0 and vice versa. Note that the Eu-
ler’s formula, Eq.(8), takes the following forms due to the

contraction of the trigonometric function.

ω =

± √3
2
+

i
2

σ, (11)

and

ω = iσ, (12)

where

σ =

∣∣∣∣∣∣∣k
2
∥D∥k∥cskyρs⟨vz⟩′

ρ2
sk2
⊥

∣∣∣∣∣∣∣
1/3

. (13)

Briefly, we refer to Eq.(11) as the oscillatory mode and
Eq.(12) as the pure growth mode. These are named after
the physical pictures of these waves in a real space. In the
oscillatory mode, the amplitudes of waves increase with
oscillation in the real space and propagate as time passes;
this represents the travailing mode. Furthermore, the di-
rection of vz and its gradient have a certain meaning for its
propagation direction. This is because the direction of ⟨vz⟩′
imposes constraints over k∥ and ky. For example, when the
sign of ⟨vz⟩′ is positive, the sign of the product k∥ky must be
negative to meet the condition to be excited. Considering
the phase velocities ω/k∥ and ω/ky, it can be easily seen
that the sign of ⟨vz⟩′ determines the propagation direction
of this traveling mode. In the pure growth mode, the ampli-
tudes of waves increase exponentially without propagating
in the real space.

The excitation of these modes depends on the sign of
σ in Eq.(13), and the component k∥ky⟨vz⟩′ is responsible
for its sign. Considering the imaginary parts of Eq.(11)
and Eq.(12), for exciting the oscillatory mode, the sign
of k∥ky⟨vz⟩′ must be negative. Meanwhile, when the sign
of k∥ky⟨vz⟩′ is positive, the pure growth mode can be ex-
cited. In summary, if k∥ky⟨vz⟩′ , 0, either the oscillatory or
pure growth mode can be chosen. Compared with other
regimes, especially PVG [19], we can evaluate this as a
broader condition. This is because a PVG with adiabatic
electrons demands k∥ky⟨vz⟩′ > 0.

In addition, k∥ky⟨vz⟩′ is the component that determines
the time evolution of vorticity. Especially, k∥ky⟨vz⟩′ is ex-
cited from the compression term in Eq.(2). The excita-
tion of these distinctive modes is regulated by the com-
pressibility, which has also been discussed previously, e.g.,
in [17, 27].

2.2 Fluctuation
In each mode, the density and momentum fluctuations

are derived from Eq.(9) and Eq.(10), respectively. In the
oscillatory mode, we obtain density fluctuation as:

ñosc,k = −
k∥cskyρs⟨vz⟩′

2σ2
(1 ∓ i

√
3)ϕ̃k. (14)

In the above equation, phase differences exist between the
density and electrostatic potential fluctuations. Thus, we
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can expect finite particle transport in this mode. Further-
more, we can obtain the momentum fluctuation in the os-
cillatory mode as:

ṽ∥,osc,k = −
kycsρs⟨vz⟩′

2σ
(i ∓
√

3)ϕ̃k.

Additionally, finite phase differences exist between the ve-
locity and electrostatic potential fluctuations. Therefore,
we can expect finite momentum transport in this mode.

In the pure growth mode, we obtain the density fluc-
tuation as:

ñpg,k =
k∥cskyρs⟨vz⟩′

σ2
ϕ̃k. (15)

Considering this, we cannot expect net particle transport in
this mode because no phase difference exists between the
density and electrostatic potential fluctuations. In addition,
we can obtain momentum fluctuation in the pure growth
mode as

ṽ∥,pg,k = −i
cskyρs⟨vz⟩′
σ

ϕ̃k.

Hence, we can, likewise as to the oscillatory mode, expect
finite momentum transport in the pure growth mode.

2.3 Transport
In this section, we focus on the transport features

of PVG convective cells using quasi-linear analysis [28].
We will perform each calculation for the oscillatory and
pure growth modes. In the quasi-linear analysis, the par-
ticle flux caused by fluctuating E × B drift is given by
Γ = ⟨ṼE×Bñ⟩. Analogously, the momentum flux is given
by Πrz = ⟨ṼE×Bṽ∥⟩.

In the oscillatory mode, each flux can be calculated as
follows. Starting from the density flux in the oscillatory
mode, we can get

Γosc = ⟨ṼE×Bñosc⟩

=

⟨
−

iky
B0
ϕ̃k · −

k∥cskyρs⟨vz⟩′

2σ2
(1 ∓ i

√
3)ϕ̃k

⟩
,

Re[Γosc] =

⟨
±
√

3
k∥cskyρs · ky

2σ2 · B0
|ϕ̃k|2⟨vz⟩′

⟩
= Γ+osc + Γ

−
osc

≈ 0.

Because the real parts of Γosc can only contribute to particle
transport, there are equal volumes of transport in the oppo-
site direction, as shown above. Contrary to our expectation
from Eq.(14), there was no particle transport here because
they cancel each other. Momentum flux in this mode is
calculated as follows:

Πrz,osc = ⟨ṼE×Bṽ∥,osc⟩

=

⟨
−

iky
B0
ϕ̃k · −

cskyρs⟨vz⟩′
2σ

(i ∓
√

3)ϕ̃k

⟩

=

⟨
cskyρs · ky

2σ · B0
(−1 ∓ i

√
3)|ϕ̃k|2

⟩
,

Re[Πrz,osc] = −
∑

k

c2
sk2
yρ

2
s

2σ
|ϕ̂k|2⟨vz⟩′

= −Dv,osc⟨vz⟩′. (16)

Here Dv,osc =
∑

k(c2
sk2
yρ

2
s/2σ)|ϕ̂k|2. Because the real parts

of Πrz,osc can, likewise as to particle flux, contribute to
momentum transport, there is finite momentum transport.
From Eq.(16), this momentum transport can be formed as
the eddy viscosity on flow. This eddy viscosity character-
izes momentum flux. When exciting the oscillatory mode,
its momentum flux is down the gradient.

In the pure growth mode, we can also calculate each
flux as follows. Beginning from the density flux in the pure
growth mode, we obtain

Γpg = ⟨ṼE×Bñpg⟩

=

⟨
−

iky
B0
ϕ̃k ·

k∥cskyρs⟨vz⟩′

σ2
ϕ̃k

⟩
,

Re[Γpg] = 0.

As expected from Eq.(15), no finite particle transport is
observed in this mode. This is obvious because the den-
sity fluctuations are in phase with the electrostatic potential
fluctuations in Eq.(15). The momentum flux in this mode
is calculated as follows:

Πrz,pg = ⟨ṼE×Bṽ∥,pg⟩

=

⟨
−

iky
B0
ϕ̃k · −i

cskyρs⟨vz⟩′
σ

ϕ̃k

⟩
,

Re[Πrz,pg] = −
∑

k

c2
sρ

2
sk2
y

σ
|ϕ̂k|2⟨vz⟩′

= −Dv,pg⟨vz⟩′. (17)

Here Dv,pg =
∑

k(c2
sρ

2
sk2
y/σ)|ϕ̂k |2. This momentum flux has

a real part, which contributes to momentum transport. As
with the case of the pure growth mode, this flux can be
formed as the eddy viscosity in Eq.(17). When the pure
growth mode is excited, its momentum flux is down the
gradient.

3. Summary and Discussion
Herein, the linear stability analysis and transport fea-

tures of the PVG convective cell are explored theoreti-
cally. The PVG convective cell can be excited when the
time scale of the electron motion across the magnetic field
becomes shorter than that of electron diffusion along the
magnetic field, in addition to a strong parallel flow shear.
This electron response is characterized by the so-called hy-
drodynamic response, while it gets an adiabatic response
in an opposite relation for these time scales. Comparing
PVG with adiabatic electrons, the PVG convective cell has
a broad condition for kyk∥⟨vz⟩′ for instability. A PVG con-
vective cell can be destabilized with kyk∥⟨vz⟩′ , 0, while
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Fig. 2 This is the plot of Eq.(18). Parallel axis corresponds
to the electron temperature [eV] and vertical axis corre-
sponds to the parallel flow shear [Hz].

PVG with adiabatic electrons can only be destabilized with
kyk∥⟨vz⟩′ > 0. Two distinctive modes are found when the
PVG convective cell is excited: the oscillatory and pure
growth modes. The oscillatory mode is characterized by
spatial propagation, while the pure growth mode is not.
Moreover, density fluctuations exhibit phase differences in
the oscillatory mode, which is unlikely to occur in the pure
growth mode, while parallel velocity fluctuations in both
modes demonstrate phase differences.

For transport, these two modes share their transport
characteristics. Momentum flux is characterized by eddy
viscosity, which relaxes the parallel velocity gradient when
either of the modes is excited. Meanwhile, particle flux
does not contribute to transport in either modes. Note that
the mechanisms that lead to these particle transports are
different from each other. In the oscillatory mode, because
the same amount of finite particle transport can be con-
veyed in the opposite direction, these fluxes cancel each
other. In contrast, in the pure growth mode, because its
density and electrostatic potential fluctuations are in phase
with each other, its particle flux is not originally generated.
Owing to these results, the PVG convective cell cannot suf-
ficiently broaden the SOL width to protect divertor plates
from heat loads. However, compared with PVG with adi-
abatic electrons, a PVG convective cell can help passively
to achieve this purpose. This is because the pinch effect
caused by PVG with adiabatic electrons disappears in the
PVG convective cell.

In the discussion, we mention the excitation of PVG
convective cells. As previously mentioned in Sec. 2.1, the
time scale for parallel velocity (∇∥vi) is dominant over the
time scale for drift motion (ω∗e) in the PVG convective
cell. Additionally, we can identify the region where the
PVG convective cell is likely to be excited using v∗e∂yϕ̂ ≤
∇∥ṽi. This leads to the comparison between the second and
third terms on the LHS of (2). Concerning ∇∥ṽi, it is obvi-
ous to obtain ∇∥ṽi from Eq.(9). Then the comparison of the

magnitude between v∗e∂yϕ̂ and ∇∥ṽi is obtained as

k∥cskyρs⟨vz⟩′
ω

≥ kyρs
cs

Ln
,

⟨vz⟩′ ≥
cs

Ln

√
cs

Ln

mi/me

νe,i
. (18)

Here we assume ρsk⊥ ∼ 1 and ky/k⊥ ∼ 1. Ln is taken
as minor radii, thus Ln is 2[m] in ITER. Taking mi/me

as the usual physical constant, it is approximately 1.8 ×
103. νe,i is the electron collision frequency. Considering
the case of a large device like ITER, we can assume cs/Ln

as approximately equal to 100 [kHz]. Plotting Eq.(18) in
the range of 0 to 60 [eV], the curve is proportional to T 3/2

e

in νei. Finally, we obtain Fig. 2. The PVG convective cell
can be excited for values above the curve in Fig. 2.
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