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A field-aligned coordinate system using a shifted metric technique has been implemented to a global gyroki-
netic code GKNET. This coordinate system allows for simulations with lower resolution in the direction along the
magnetic field line, which is especially effective in the outer core regions with higher q values. Realistic tokamak
geometries, including up-down asymmetric equilibria, have also been implemented by using a newly developed
interface code that connects GKNET and a free-boundary 2D Grad-Shafranov equation solver. This is essential
for tokamak edge simulations, which will be developed in the future. As an application, the nonlinear simulation
of the ion temperature gradient (ITG) mode with the JT-60SA ITER-like plasma [M. Nakata et al., Plasma Fusion
Res. 9, 1403029 (2014)] has been performed. The result shows that the linear ITG instability with high poloidal
modes and resultant zonal flow generation are properly traced. In this case, it is estimated that the number of
computational grids can be reduced to 1/94 compared to that of the flux surface coordinate system.
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1. Introduction
The dynamics of plasma in the tokamak edge, par-

ticularly in the outer core region that connects with the
SOL/divertor region, is crucial for several aspects such as
fuel supply/impurity pumping, divertor heat load control,
L-H transition, and others. These issues are particularly
important for upcoming fusion devices like JA-DEMO [1].
Although gyrokinetic simulation is an essential tool for
studying these physics based on the first principle, it is
challenging to apply it to the edge region due to higher
q values and complex magnetic surface geometries that are
not present in the core region.

To address these problems, we have implemented a
field-aligned coordinate system [2] using a shifted metric
technique [3] into our global gyrokinetic code GKNET [4].
This system can significantly reduce the computational
cost because the wavenumbers of resonant instabilities are
low in the direction along the magnetic field lines. It is es-
pecially useful in edge regions where higher poloidal mode
numbers resonate with the higher q values.

We have also developed an interface code that con-
nects GKNET with a free-boundary 2D Grad-Shafranov
equation solver. This integration allows for gyrokinetic
simulations with realistic tokamak equilibria, including
up-down asymmetric equilibria that cannot be handled by
the conventional GKNET [5].
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The paper is organized as follows. Section 2 explains
the field-aligned coordinate system and the correction of
its secular cell deformation using the shifted metric tech-
nique. Section 3 provides the calculation model used in the
study with GKNET. Section 4 presents a linear simulation
of the ion temperature gradient (ITG) mode in a concen-
tric circular torus plasma with cyclone-base-case (CBC)
parameters. Section 5 presents a nonlinear simulation of
ITG mode in a JT-60SA plasma. Finally, Sec. 6 provides a
summary of the findings and outlines future plans.

2. Field-Aligned Coordinate System
A field-aligned coordinate system [2] is a coordinate

system, in which one of the covariant basis vectors is cho-
sen along the magnetic field line. This system can signif-
icantly reduce computational cost because the wavenum-
bers of resonant instabilities are low in the direction along
the magnetic field line. However, this coordinate system
often has a secular cell deformation, which can degrade
the accuracy of the radial differences in the finite differ-
ence method.

In this paper, we use field-aligned coordinates that uti-
lizes the poloidal angle as the label along the magnetic field
line. We employ a shifted metric technique [3] to correct
the secular cell deformation. The shifted metric method
technique divides the torus into Ns segments with respect
to the poloidal angle and defines field-aligned coordinates
with an appropriate reference point as θ j = −π + 2π( j +
0.5)/Ns in each segment, where j = 0, 1, · · · ,Ns − 1. In
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this case, the field-aligned coordinates in the j-th segment
(x j, y j, z j) are defined as:

x j = ρ, (1)

y j = yshift, j − ζ, (2)

z j = θ − θ j, (3)

where the shift angle yshift, j is defined with the magnetic
field pitch ν ≡ (B · ∇ζ)/(B · ∇θ),

yshift, j (x, z) =
∫ θ

θ j

ν(ρ, θ′)dθ′. (4)

Here, ρ is a radial coordinate that corresponds to a
magnetic-flux-surface, while θ and ζ represent the arbitrary
poloidal and geometrical toroidal angles, respectively. The
unit vector parallel to the magnetic field and the parallel
gradient can be expressed as:

b ≡ B
|B| =

1
√

gzz
ez, ∇∥ ≡ b · ∇ = 1

√
gzz

∂

∂z
, (5)

where ez is the covariant basis vector for z and gzz ≡ ez · ez

is the zz component of the covariant metric tensor. It is
important to note that this analysis assumes toroidal ax-
isymmetric equilibria.

The computational domain of the Nw-th annular
wedge torus is represented by Ns segments defined in the
following range,

Lx ∈ [xa, xb] , Ly ∈
[
0,

2π
Nw

)
, Lz ∈

[
− π

Ns
,
π

Ns

)
.

(6)

Here, Nw denotes the wedge number, xa and xb indicate
the inner and outer boundaries of radial domain, and the
field-aligned girds (y, z) in the (θ, ζ)-plane for Ns = 1 and
Ns = 4 are shown in Figs. 1 and 2, where Nw = 1.

In this coordinate system, the position along the mag-
netic field line is labeled by the poloidal angle. Compared
to the flux surface coordinates (ρ, θ, ζ), it is particularly ef-
fective in the edge regions where the higher poloidal mode
numbers resonate with the higher q values because the spa-
tial domain is discretized in the direction aligned with the
field line instead of the poloidal direction.

The wavenumber in the x direction is written as

kx = kρ + n
∫ θ

θ j

∂ν(ρ, θ′)
∂ρ

dθ′, (7)

where n is the toroidal mode number. There are regions
where |kx| > |kρ| due to the second term in Eq. (7), which
requires higher resolution in the radial direction. This is
a significant problem, particularly in edge regions where
the magnetic shear is higher and the higher toroidal mode
numbers resonate. Increasing Ns can alleviate this prob-
lem by reducing the integral interval of the second term in
Eq. (7) in each segment as is shown in Fig. 2.

Fig. 1 Computational grids of (y, z) for Ns = 1 on a flux surface.
The red and blue lines indicate the y- and z- directions re-
spectively. Arrows indicate double periodic boundaries.

Fig. 2 Computational grids of (y, z) with the shifted metric for
Ns = 4 on a flux surface. The blue dots are the buffer cell
(note that only a part is shown).

To interpolate physical quantities between segments,
we employ coordinate transformation via phase relations.
Let us consider the coordinate transformation of a quan-
tity a from the j-th segment a(x j, y j, z j) j to j + 1-th seg-
ment a(x j+1, y j+1, z j+1) j+1. The Fourier series expansion of
a(x j, y j, z j) j with respect to the toroidal mode number n, in
in the j-th segment, can also be expressed in the j + 1-th
segment.

a(x j, y j, z j) j

=
∑

n

ân(x j, z j) j exp(iny j),

=
∑

n

[ân(x j, z j) j exp(−in∆shift)] exp(iny j+1), (8)

which results in

ân(x j+1, z j+1) j+1 = ân(x j, z j) j exp(−in∆shift). (9)

Here, ∆shift is the relative phase shift,

∆shift = yshift, j+1 − yshift, j = −
∫ θ j+1

θ j

ν (ρ, θ′)dθ′.

(10)

Using Eq. (9) for interpolation in Fourier space provides a
very smooth connection between segments.

3. Calculation Model in GKNET
The GKNET code is a global gyrokinetic code that

evolves the perturbed gyro-center distribution function of
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each particle species and the perturbed electrostatic po-
tential by self-consistently solving the gyrokinetic Vlasov
equation and the gyrokinetic quasi-neutrality condition.

In this study, bulk ions are assumed to be protons. The
collisionless electrostatic gyrokinetic Vlasov equation for
ions can be expressed as follows:

∂δ f
∂t
+ V(0)

R · ∇δ f + V(1)
R · ∇ f0 + V(1)

R · ∇δ f

+V (0)
v∥

∂δ f
∂v∥
+ V (1)

v∥

∂ f0
∂v∥
+ V (1)

v∥

∂δ f
∂v∥
= 0, (11)

with

V(0)
R =

1
B∗∥

(
B∗v∥ +

1
e

b × ∇H(0)

)
, (12)

V(1)
R =

1
B∗∥

(
1
e

b × ∇H(1)

)
, (13)

V (0)
v∥ = −

1
miB∗∥

B∗ · ∇H(0), (14)

V (1)
v∥ = −

1
miB∗∥

B∗ · ∇H(1), (15)

where the gyro-center distribution function of ions f
is scale-separated by the gyrokinetic ordering, as given
by: f (R, v∥, µ, t) = f (0)(R, v∥, µ) + f (1)(R, v∥, µ, t) =
f0(R, v∥, µ) + δ f (R, v∥, µ, t), where f0 represents the equi-
librium part of f given by the local Maxwellian distribu-
tion function f0 = fM , δ f represents the perturbed part
of f . H(0) = 1

2 miv2
∥ + µB and H(1) = e⟨ϕ⟩ are the zeroth

and the first-order of the gyrokinetic Hamiltonian, respec-
tively. Here, ⟨· · · ⟩ represents the gyro-averaging operator,
B∗ ≡ B + mi

e v∥∇ × b and B∗∥ ≡ B∗ · b. It is worth noting
that (R, v∥, µ) are the gyro-center coordinates. where R is
the gyro-center position, v∥ is the parallel velocity and µ

is the magnetic moment defined by µ ≡ miv2
⊥/2B with the

perpendicular velocity v⊥.
The gyrokinetic quasi-neutrality condition, with adia-

batic electron response is expressed as follows:

∇⊥ ·
(min0

B2
∇⊥ϕ

)
− e2n0

Te

(
ϕ − ⟨ϕ⟩ f

)
= −2π

e
mi

"
⟨δ f B∗∥⟩ dv∥dµ, (16)

where ϕ is the electrostatic potential and ⟨· · · ⟩ f is the flux-
surface-averaging operator.

The physical quantities are normalized by the mag-
netic field strength at the magnetic axis B0, the ion tem-
perature at the half minor radius Ti0, the density at the half
minor radius n0, the elementary charge e, the ion mass mi,
the thermal velocity vti =

√
Ti0/mi, the ion cyclotron fre-

quency Ωi = eB0/mi, and the gyro radius ρti = vti/Ωi.
The computational domain is represented by

Lv∥ ∈ [−vc, vc] , Lµ ∈
[
0, µc

]
, (17)

in addition to Eq. (6), where vc and µc are the normalized
cut-off velocity and magnetic moment, respectively.

In this work, Dirichlet boundary conditions are set at
the inner and outer radial boundaries, such that:

δ f (x = xa) = δ f (x = xb) = 0. (18)

4. ITG Simulation with Concentric
Circular Torus
To verify the GKNET code using the field-aligned co-

ordinates with the shifted metric, a linear ITG simulation
is performed with the CBC parameters in a concentric cir-
cular torus.

The simulation is set up as follows: The GKNET code
considers gyrokinetic ions and adiabatic electrons. The ra-
dial coordinate is defined as x = r/a0 where r is the ge-
ometrical minor radius and a0 is the minor radius at the
last closed flux surface. The range of the simulation do-
main is set to Lx ∈ [0.1, 1] to exclude the magnetic axis.
The normalized cut-off velocity and magnetic moment are
set to vc = 5, µc = 12.5, respectively. The number of
grids used for this simulation are (Nx,Ny,Nz,Nv∥ ,Nµ) =
(128, 216, 32, 80, 16) for both Ns = 1 and Ns = 8. The
time increment used is ∆t vti/R0 = 1/100. The system size
is a0/ρti = 150 and the parameters a0/R0 = 0.36, R0/Ln =

2.22, R0/LTi = R0/LTe = 6.92, q = 0.85 + 2.18(r/a0)2 are
set, where R0 is the major radius at the magnetic axis. The
regions with steep density/temperature gradients are cen-
tered at r/a0 = 0.5 and the magnetic shear s = r/q dq/dr is
small at r/a0 = 0.5. Consequently, the cell deformation is
expected to be small, and there is little difference expected
between the simulation results obtained with Ns = 1 and
those obtained with Ns = 8.

Figure 3 demonstrates that the linear growth rates are
nearly identical for both Ns = 1 and Ns = 8, which sug-
gests that the implementation of the field-aligned coordi-
nate system with the shifted metric is successful.

5. ITG Simulation with JT-60SA
ITER-like Equilibrium
In addition to the development of the interface code

that connects GKNET with a free-boundary 2D Grad-
Shafranov equation solver, we present a result of a non-

Fig. 3 Dispersion relations of toroidal ITG instability in the
CBC case for Ns = 1 (black) and Ns = 8 (red).
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linear electrostatic ITG simulation with δ f global model
in a JT-60SA ITER-like plasma [6].

The simulation set up is as follows: gyrokinetic ions
and adiabatic electrons are considered. The system size
is a0/ρti = 294. The radial coordinate is defined by
x = ρ =

√
ψ where ψ is the normalized poloidal mag-

netic flux function defined with ψ = 0 at the magnetic axis
and ψ = 1 at the separatrix. Lx ∈ [0.1, 0.9] is set to remove
the magnetic axis and the pedestal region. The domain of
the velocity space is the same as in Sec. 4. The numbers of
grids are (Nx,Ny,Nz,Nv∥ ,Nµ) = (720, 256, 32, 80, 16) and
the number of segments in the shifted metric is Ns = 8,
where the wedge number is Nw = 4. The time increment
is ∆t vti/R0 = 1/100. Figure 4 shows the profiles of this
equilibrium, where Ti = Te. This result demonstrates the
successful implementation of the interface code, allowing

Fig. 4 Profiles of JT-60SA ITER-like equilibrium in this study.

Fig. 5 Dispersion relations (left) of toroidal ITG mode and the
poloidal harmonics of eϕn=100/Ti0 (right) in the linear
simulation.

Fig. 6 Time evolution of the toroidal mode energy |eϕn/Ti0|.
Note that they are averaged over the poloidal cross sec-
tion.

GKNET to handle realistic tokamak equilibria. In Fig. 5,
we present the dispersion relation and poloidal harmon-
ics of the n = 100 component of electrostatic potential
eϕn=100/Ti0, which is the most unstable mode, in the linear
simulation. The dispersion relation is qualitatively consis-
tent with the previous research that used a local gyrokinetic
code [6]. We observe that the resonance condition m = nq
is satisfied for (m, n) = (233, 100) with q = 2.33. In Fig. 6,
we show the linear growth of initially unstable modes and
their nonlinear saturation. Figure 7 confirms that the linear
instability with the high poloidal mode is resolved, and the
zonal flow is generated at the corresponding locations.

Finally, we discuss the number of grids required. We
consider the poloidal grids required to resolve n = 160 and
mres = nq = 160 × 2.3 ≈ 370 mode, which is unstable in
this case. Assuming that 8 times the number of grids are

Fig. 7 Re(eϕn=100/Ti0) in the linear phase at t vti/R0 = 50 (up)
and ϕ (ζ = 0) after the nonlinear saturation at t vti/R0 =

200 (down).
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needed for the mode number, Nθ = 370 × 8 ≈ 3000 grids
are required when using flux surface coordinates (ρ, θ, ζ).
On the other hand, when using the field-aligned coordi-
nates (x, y, z), only Nz = 32 grids are sufficient, as in this
case. Therefore, it is estimated that the number of required
grids can be reduced to 32 ÷ 3000 ≈ 1/94 by using the
field-aligned coordinate system.

6. Summery and Future Plans
The field-aligned coordinate system has been suc-

cessfully implemented into the global gyrokinetic code
GKNET to effectively address instabilities with high
poloidal mode numbers, which were previously difficult to
handle using cylindrical coordinates (R,Z, ζ) or flux sur-
face coordinates (ρ, θ, ζ). The implementation of this sys-
tem, with the shifted metric, has been validated by per-
forming the ITG simulation with the concentric circular
torus.

Furthermore, the development of an interface code
that connects GKNET with a free-boundary 2D Grad-
Shafranov equation solver, has enabled the handling of re-
alistic tokamak equilibria, including up-down asymmetric
equilibria which was not possible with earlier versions of
GKNET.

A nonlinear ITG simulation has been carried out on
the JT-60SA ITER-like plasma, demonstrating that the lin-
ear instability of the high poloidal mode number has been
resolved and that the corresponding zonal flow has been

generated. The use of the field-aligned coordinate sys-
tem has resulted in a significant reduction of computational
grids, estimated to be approximately 1/94 in comparison to
the flux surface coordinate system.

In future plans, the development of GKNET will
be extended to address tokamak edge turbulence. Cur-
rently, an interface code is being developed to generate
a computational grid of field-aligned coordinates in the
SOL/divertor region, initially focusing on an electrostatic
model before investigating the important issues discussed
in the introduction.
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