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A challenge in the in-situ visualization is the proper setting of the visualization’s viewpoint. While vi-
sualizations should focus on a small part of the simulation region or region of interest (ROI), the appear-
ance/disappearance and the motion of ROI are usually unknown beforehand in simulations of complex phe-
nomena. In our previous paper, we proposed to make the visualization camera a kind of autonomous agent or a
“smart camera”. In this approach, the camera agent locates itself near an ROI and keeps an appropriate distance to
track the motion of the ROI. The next step in our approach is to increase the number of camera agents to visualize
an ROI from multiple perspectives. A problem in introducing multiple camera agents resides in the rules for the
agents’ motion. In this paper, we propose to use virtual materials, or pheromones, that trigger social responses in
camera agents.
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1. Introduction
In-situ visualization is becoming a necessary research

method in high-performance computing (HPC) [1]. In this
approach, researchers obtain high-quality visualization im-
ages or videos during simulation runs by adding visualiza-
tion tasks to simulations without storing massive numer-
ical data. In the post-hoc visualization approach usually
adopted in HPC, the numerical data’s spatial and temporal
resolution are strictly restricted due to the storage capacity
and I/O bandwidth.

A problem in the in-situ visualization is that it does
not allow interactive control of visualization parameters
because one has to specify the parameters before the simu-
lation job. One cannot change the parameters during the
simulation, such as camera position, viewing angle, ap-
plied visualization algorithms, and the related variables of
the algorithm. Among them, the most severe restriction
resides in the camera position. It is generally difficult to
prescribe a local area, or a region of interest (ROI), in the
simulation region where one should apply intensive visual-
izations during a simulation, especially when the simulated
phenomena exhibit complex dynamics.

We proposed an in-situ visualization approach that en-
ables interactive analysis, rather than interactive control,
of in-situ visualized videos [2]. The key idea is to apply
multiple in-situ visualizations from many different view-
points at once, then to apply the interactive exploration of
the video dataset produced by the in-situ visualization. A
similar approach based on images to in-situ visualization
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is Cinema [3, 4]. Extending our video-based method, we
formulated “4D Street View” [5, 6]. In this scheme, we
place multiple omnidirectional cameras with the full field
of view of 4π steradians. The omnidirectional cameras are
scattered in the whole simulation region. The viewpoint
and viewing direction can be interactively changed after-
ward as in the Google street view [7]. In the 4D Street
View, the visualization points, or cameras, are fixed in
space, and that hampers the flexibility of viewing expe-
riences. In 2021, we proposed a complementary approach
[8] in which visualization cameras can move toward ROI
by themselves. The key is to make a viewpoint an inde-
pendent entity, combining an agent-based model (ABM)
with the in-situ visualization. The application of ABM to
information visualization in general was proposed in [9]
as agent-based visualization (ABV). The agent-based in-
situ visualization proposed in our study is an application
of ABV concept to the in-situ visualization for HPC. In
our agent-based in-situ visualization, the agents are visual-
ization cameras that autonomously identify and track ROIs
by following prescribed rules to apply in-situ visualization
near them during the simulation. The case of a single au-
tonomous camera tracking the motion of an unpredictable
ROI was shown in our previous study.

The aim of this paper is to propose a method to ex-
tend the agent-based in-situ visualization by a single agent
to multiple agents or camera swarms. In our single-camera
test case in the previous study, we set a rule of ROI tracking
for the camera agent which was designed to make the cam-
era agent autonomously finds and tracks an ROI in the sim-
ulation region. But if we apply the same rule to the mul-
tiple agents, they will be concentrated in a small spot near
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an ROI because they follow the same prescription. The
rule for multiple cameras should differ from that for a sin-
gle camera. In addition to avoiding overcrowding, a rule
is required that makes the best use of the camera swarm
scattered throughout the simulation region. An efficient
visualization could be achieved when some agents “sniff
out” an ROI and communicate its location to other agents.
The unpredictable appearance and motion of ROIs in the
simulation can be effectively traced by multiple agents. In
other words, we propose to introduce so-called swarm in-
telligence [10] to the in-situ visualization.

The key idea of this work can also be illustrated by
contrasting two space-times: We consider a kind of virtual
space-time, or a “ghost” world, where a group of movable
viewpoints called camera agents resides. We assume that
the ghost world is overlapped with the “real” world, where
physical phenomena take place. Each camera agent in the
ghost space applies visualization of the physics in the real
world. The real world influences the camera agents in the
ghost world, but the interaction is one-sided. The ghost
world does not influence the real world. The size of the
ghost world is generally more extensive than the real world
to obtain visualizations taken from outside the real world.
The time of the ghost world can also be different from that
of the real world. The time step for the camera agents’ mo-
tion is not necessarily the same as the time step of the sim-
ulation in general. (In the present paper, we use the same
time step for both the real and ghost world.) To concentrate
the visualization on some local region in the simulation, or
region-of-interest (ROI), we assume a kind of virtual ma-
terial (pheromone) penetrates from the real world to the
ghost world that attracts the camera agents.

2. Ant Foraging Algorithm
In agent-based modeling (ABM), autonomous entities

called agents have their own properties, ability, and behav-
iors. Agents communicate with each other and with the
environment [11].

One standard means of agent-environment interaction
is to use a pheromone. A pheromone, which is a func-
tion of space and time or a scalar field, is known to lead
a self-organization of a group of simple agents [12]. Sim-
ulating the pheromones of insects and other animals, the
pheromone is usually designed to be released by some
agents, acting as a source term of the scalar field. Some
released pheromones are evaporated, and some are diffu-
sively propagated in space. Another agent at a distance
can sense not only the existence of the pheromone but also
its spatial gradient. When we want the agent to get closer
to the source position of the pheromone, we design a rule
of the agent motion so that it moves toward the direction
of ascending the field gradient.

In the ant foraging algorithm [13], ant agents that find
“food” tell the food’s location and the path between the
food and their nest by depositing pheromones into the en-

Fig. 1 The ant foraging algorithm simulated by NetLogo.

vironment. When an ant agent finds food, it picks up some
of them to bring it back to the nest. The ant releases an
attractive pheromone on the way back to the nest. When
a randomly walking other ant agent happens to be on the
pheromone trail, it tracks the trail and finds the food in the
end. The release of the pheromone is repeated on the way
back to the nest, and thus more other ants are attracted to
the trail.

We have simulated the ant agents with the foraging
algorithm with a standard ABM simulator NetLogo [14];
see Fig. 1. The purple circle is the ants’ nest, the blue
ones are food, and the white and green paths are the
pheromones they release. The ant agents acted as expected
by indirect interaction by means of pheromones: They au-
tonomously find the blue circle representing food and re-
lease pheromones to communicate with other agents when
they return to the purple circle representing the nest.

3. Agent-Based In-Situ Visualization
of a Test Simulation
We incorporate the ant foraging algorithm into the

in-situ visualization of 3-dimensional (3-D) simulations.
Here we choose 3-D cellular automata (CA) [15–17] as
a target simulation. Among myriads of possible rules for
3-D CA, we adopt the following rule [18] called Rule
4/4/5/M. Each cell has one of five cell states (state-0 to
state-4) at each time step. A cell of state-0 is called empty.
The state of each cell in the next time step is determined by
the number of positive state cells in its 3-D Moore neigh-
bor cells. (There are 26 Moore neighbors for every cell.)
The empty cell becomes sate-4 when the neighbor num-
ber is 4. The state integer decrements for one every time
step, e.g., state-4 becomes state-3, and so on. The state-1
becomes state-0 unless the neighbor number is 4.

This simple rule leads to amazingly complicated and
unpredictable dynamics of the cells, which is why we
picked up this CA as a test bench for our agent-based vi-
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Fig. 2 3-D cellular automaton of Rule 4/4/5/M. In-situ visual-
ized by VISMO. (a) Initial condition. (b) A snapshot af-
ter some time steps. (c) An omnidirectional view near the
center of the simulation region just after the initial con-
dition. (d) Another omnidirectional view after some time
steps.

sualization. We have developed a 3-D CA code in For-
tran 2003. The code is parallelized by the domain decom-
position with MPI. The simulation region (the whole cells)
is divided into subregions Mx×My×Mz. One MPI process
is assigned to one subregion. A snapshot of the 3-D CA
by this code is shown in Fig. 2 in which state-1 cells are
shown by blue balls. The in-situ visualization is done by
VISMO [19]. VISMO is an in-situ visualization library for
the modern Fortran. We use a new feature of omnidirec-
tional visualization of VISMO, which will be reported in
another paper.

Figure 2 illustrates an overview of the 3-D CA. The
panels Figs. 2 (a) and (b) are overviews visualized by the
standard, i.e., directional visualization cameras, located
outside the simulation region. The panels (c) and (d) are
omnidirectional visualization images taken from a view-
point. The viewpoint of (c) and (d) was manually selected
so that the location is near the center of the simulation re-
gion, rather than by an automatic selection based on the
pheromone algorithm described below.

In this paper, we describe our implementation strat-
egy to combine the ant foraging algorithm into the 3-D CA
code. The simulation and visualization results will be re-
ported in a separate paper. The “food” of the camera agents
corresponds to ROI in this CA.

In general, the definition of ROI depends on the simu-
lation of the subject to be visualized. In the case of 3D-CA,
the ROI was defined by the following algorithm. The state
of each cell is binary, either alive or non-alive. The ROI
as the visualization target is larger than the size of a single
cell and smaller than the entire simulation domain. ROI
in this work is a location where a group of cells, or a cell
cluster, collectively exhibits intriguing variations in space

Fig. 3 A schematic view of the divided domain method for effi-
cient tracking of the camera agents.

and time. Lacking a rigorous definition of the intriguing
cell cluster, we simply define a ROI as a cell cluster that
have enough number of alive cells.

Each agent senses the diffused pheromone emanat-
ing from an ROI according to the original ant foraging
algorithm. When the camera agent detects an ROI by
means of the pheromone, the agent releases an additional
pheromone. It continues to release the pheromone as it
tracks the moving ROIs. The other camera agents are at-
tracted to the trail of the pheromone. When a camera agent
detects no pheromone, it randomly walks until it encoun-
ters the pheromone.

Because the amplitude of the pheromone field is too
weak to sense for agents located very far from the ROI,
we divide the whole simulation region into L subdomains
to address the above problem. (The subdomains generally
differ from the MPI subregion.) Here we call cells with
state-1 to state-4 alive cells. We count the number of alive
cells, Aℓ, in ℓ-th subdomain (1 ≤ ℓ ≤ L) and release the
pheromone at the center of gravity of alive cells over the
region of the ℓ-th subdomain if Aℓ is larger than a criti-
cal value, say 100. Figure 3 schematically shows the case
when L = 5× 5 = 25. The green circles are camera agents.
Instead of following the gradient vector of the pheromone
field, agents move toward the ℓm-th subdomain that has the
maximum number of Aℓm (Aℓm = max{Aℓ}). In Fig. 3, two
subdomains contain enough number of alive cells, and the
center of gravity in each subdomain is denoted by cross
marks. The gray background depicts the subdomain with
the largest number of alive cells A. When an agent en-
ters into the ℓm-th subdomain (gray in Fig. 3) or the agent
happens to have been inside the subdomain at the moment,
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the agent starts moving toward the gradient vector of the
pheromone and releasing the pheromone by itself as a trail.

When there is no ROI at all in the simulation region,
the agents move randomly, waiting for the appearance of
the pheromone in some subdomain.

In order to avoid the overcrowding of agents, we
will implement a repulsive pheromone. The repulsive
pheromone acts oppositely from the attractive pheromone
described above. Each agent releases the repulsive
pheromone when it gets closer to an ROI. Other agents
move in the opposite way as the attractive pheromone; it
moves toward the negative gradient direction of the repul-
sive pheromone field. Another paper will also report the
results of this repulsive pheromone method.

4. Summary
We propose the concept of agent-based in-situ visual-

ization as a new approach to the practical in-situ visualiza-
tion of large-scale parallel computer simulations. In this
method, visualization points or cameras are autonomous
entities. The camera agents fly in the simulation to find
and get closer to local regions of interest (ROI) under in-
teractions with the environment (pheromones) and other
agents.

Acknowledgments
This work was supported by JSPS KAKENHI (Grant

Numbers 22H03603, 22K18703).

[1] H. Childs, J.C. Bennett and C. Garth, editors, In Situ Visual-
ization for Computational Science (Springer International
Publishing, 2022).

[2] A. Kageyama and T. Yamada, An approach to exascale
visualization: Interactive viewing of in-situ visualization,
Comput. Phys. Commun. 185(1), 79 (January 2014).

[3] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D.H. Rogers
and M. Petersen, An Image-Based approach to extreme
scale in situ visualization and analysis, 2014.

[4] P. O’Leary, J. Ahrens, S. Jourdain, S. Wittenburg, D.H.
Rogers and M. Petersen, Cinema image-based in situ anal-
ysis and visualization of MPAS-ocean simulations, Parallel
Comput. 55, 43 (July 2016).

[5] A. Kageyama and N. Sakamoto, 4D street view: a video-

based visualization method, PeerJ Comput Sci. 6, e305
(November 2020).

[6] A. Kageyama, N. Sakamoto, H. Miura and N. Ohno,
Interactive exploration of the In-Situ visualization of a
magnetohydrodynamic simulation, Plasma Fusion Res. 15,
1401065 (2020).

[7] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R.
Lyon, A. Ogale, L. Vincent and J. Weaver, Google street
view: Capturing the world at street level, Computer 43(6),
32 (June 2010).

[8] W. Yan, R. Sakai and A. Kageyama, Toward agent-based in
situ visualization. In Chang By and C Choi, editors, Meth-
ods and Applications for Modeling and Simulation of Com-
plex Systems, CCIS, 1636, October 2022.

[9] A. Grignard and A. Drogoul, Agent-Based visualization:
A Real-Time visualization tool applied both to data and
simulation outputs, In The AAAI-17 Workshop on Human-
Machine Collaborative Learning, pages 670-675, 2017.

[10] G. Beni and J. Wang, Swarm intelligence in cellular robotic
systems, In P Dario and others, editors, Robots and Biolog-
ical Systems: Towards a New Bionics? (Springer-Verlag
Berlin Heidelberg, 1993) pp. 703-712.

[11] U. Wilensky and W. Rand, An Introduction to Agent-
Based Modeling: Modeling Natural, Social, and Engi-
neered Complex Systems with NetLogo (MIT Press, April
2015).

[12] J.-L. Deneubourg, S. Aron, S. Goss and J.M. Pasteels, The
self-organizing exploratory pattern of the Argentine ant, J.
Insect Behav. 3(2), 159 (March 1990).

[13] M. Dorigo and C. Blum, Ant colony optimization theory:
A survey, Theor. Comput. Sci. 344(2-3), 243 (November
2005).

[14] S. Tisue and U. Wilensky, NetLogo: Design and implemen-
tation of a multi-agent modeling environment, In Proceed-
ings of the Agent 2004 Conference on Social Dynamics:
Interaction, Reflexivity and Emergence, 2004.

[15] S. Wolfram, A New Kind of Science (Wolfram Media,
2002).

[16] A. Ilachinski, Cellular Automata: A Discrete Universe
(World Scientific, 2001).

[17] J.L. Schiff, Cellular Automata: A Discrete View of the
World (Wiley, December 2007).

[18] softologyblog, 3D cellular automata, https://softologyblog.
wordpress.com/2019/12/28/3d-cellular-automata-3/, Dec-
ember 2019. Accessed: 2023-1-8.

[19] N. Ohno and H. Ohtani, Development of In-Situ visualiza-
tion tool for PIC simulation, Plasma Fusion Res 9, 3401071
(2015).

2401045-4


