
Plasma and Fusion Research: Rapid Communications Volume 18, 1203090 (2023)

Classical Cross-Field Self-Diffusion Due to Finite Larmor Radius
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It has been considered that the classical diffusion of plasma particles across the magnetic field is determined
only by collisions between different species. Taking account of the finite Larmor radius ρ of an ion, the random
walk of its guiding center (step size ρ per collision time τ) can result from collisions even with the same species.
A resultant “self-diffusion” coefficient is D⊥ ≈ ρ2/2τ. When there exists a radial electric field, the step size
becomes asymmetric, and an “electric-field induced collisional displacement” of the guiding center is generated.
In an inhomogeneous plasma, the collision time for an ion is varied during a gyration, and a “self-friction force”
is induced. We propose these three collisional responses to be included to the ion fluid equations. We discuss that
the ion cross-field self-diffusion becomes important in the edge plasma, where electrons are mainly lost along the
magnetic field.
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It has been considered that the classical diffusion of
plasma particles across the magnetic field is determined
only by collisions between different species [1]. Gen-
eral fluid models so far do not directly include the clas-
sical particle diffusion term, while they include classi-
cal energy diffusion term [2]. We assume a single-ion-
species plasma (charge number Z = 1) in a uniform mag-
netic field B along z direction. Plasma profiles (density
n and temperature T ) vary along x. Diamagnetic fluxes
of ions and electrons along the homogeneous y direction
are nV i

y = (1/eB)∇(nTi) and nV e
y = −(1/eB)∇(nTe), re-

spectively. The friction force acts between ions and elec-
trons, F i/e = −Fe/i = me(V e

y − V i
y )/τ

e/i. The radial
flux along x is obtained from the force balance relation
along y, 0 = −eBVx + F i/e. One obtains a formula of
the collisional flux, nVx = −(me/τ

e/ie2B2)∇(nTe + nTi) ≈
−(⟨ρe⟩2/2τe/i)(1+Ti/Te)∇n. This is similar to the diffusive
flux with a diffusion coefficient D⊥e ≈ ⟨ρe⟩2/2τe/i. Here
e is the elementary charge, me the electron mass, τe/i the
electron-ion collision time and ⟨ρe⟩ = (2meTe)1/2/eB is the
electron Larmor radius.

Now we take account of the finite Larmor radius
(FLR) ρi of an ion particle with charge Ze and mass mi.
The random walk of its guiding center (GC) can result
from the deflection collision even with the same species.
The collisionless gyro-motion is given as

ux=u⊥ sinΦ, uy=u⊥ cosΦ and x= xg−ρi cosΦ, (1)

where u⊥ is the perpendicular speed, Φ = Ωt is the gyro
phase with a cyclotron frequency Ω = ZeB/mi, and xg is
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the GC position. Assuming that the above velocity (or gyro
phase) is changed by a 90◦ scattering (deflection) collision,

u′x=u⊥ sin(Φ±π/2) and u′y=u⊥ cos(Φ±π/2), (2)

the GC position along x is moved by this scattering;

xg
′ − xg = ρi(cosΦ′ − cosΦ) = 21/2ρi sinΘ, (3)

whereΦ′ = Φ±π/2, andΘ = Φ∓π/4. The mean square of
the random walk step size is evaluated just ρi

2. The corre-
lation time is the deflection collision time τd

i/i given in [3].
Thus the classical “self-diffusion” across the magnetic field
occurs, and a diffusion coefficient is given as

D⊥
i/i = ρi

2/2τd
i/i. (4)

Throughout the present paper, the collision time is consid-
ered much longer than the gyration period, Ωτ ≫ 1.

Figure 1 illustrates gyro-orbits of two ions of the same
species. We assume a binary collision of 90◦ scattering.
Although the total momentum and the total energy are fully
conserved, their GC positions are scattered.

The self-diffusion of ions is larger than that of elec-
trons, D⊥i/i ∼ Z3(mi/me)1/2D⊥e/e for Ti ∼ Te. A radial
electric field E can grow up immediately. This electric field
drives the E×B drift of an ion along y, uy = u⊥ cosΦ−E/B.
This time, a 90◦ scattering collision deflects the velocity as,

u′x = u
′
⊥ sinΦ′ and u′y = u

′
⊥ cosΦ′ − E/B. (5)

Under an energy-conservation condition, ux2 + uy
2 = u′ 2x +

u′ 2y , a post-collision perpendicular speed u′⊥ is altered as

u′⊥ = u⊥ + (E/B)(cosΦ′ − cosΦ), (6)

where the E × B drift speed is assumed much smaller than
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Fig. 1 Gyro-orbits of two ions (red and green particles). Solid
and dashed lines denote pre-collision and post-collision
orbits, respectively. Velocities are shown by thin arrows.
Scatterings of GC positions are shown by block arrows.

u⊥. Since the Larmor radius, ρi
′ = u′⊥/Ω, is simultaneously

altered, the GC position along x is moved as

xg
′ − xg = ρi

′ cosΦ′ − ρi cosΦ

= 21/2ρi sinΘ + (E/BΩ)(cos2Φ′ − cosΦ cosΦ′). (7)

Gyro-average displacement, which we call the “electric-
field induced collisional displacement” (EICD), is then ob-
tained as ⟨xg

′ − xg⟩Φ = E/2BΩ, and the resultant radial
velocity is given by

VEICD = ⟨xg
′ − xg⟩Φ/τd

i/i = E/2BΩτd
i/i. (8)

When ions are diffused outward, ∂ni/∂t = D⊥i/i∇2ni <

0, an inward electric field can grow up, ε0∂∇E/∂t ≈
ZeD⊥i/i∇2ni (ε0: permittivity of free space). The EICD
flux, ΓEICD = niVEICD, is reverse to the diffusive flux, as
expected.

We project the above responses of ion particles on
the ion fluid equations. In the Boltzmann equation for
an ion velocity distribution function fi, D fi/Dt = C( fi),
the self-collision term is approximated as Ci/i( fi) ≈ (1/
τd

i/i)∂2 fi/∂Φ2, for simplicity. Considering a collision-
less relation, Eq. (1), this term can be replaced with (ρi

2/

2τd
i/i) ∂2 fi/∂xg

2. Resultantly the “self-diffusion” term is
directly introduced to the equation of continuity. Similar
to this derivation, the “EICD” term is also included;

∂ni

∂t
+
∂

∂x
(niVx) =

∂

∂x

(
⟨Di
⊥⟩
∂ni

∂x
− ⟨VEICD⟩ni

)
, (9)

where ⟨D⊥i⟩ = ⟨ρi⟩2/2⟨τd
i/i⟩ is a diffusion coefficient,

⟨VEICD⟩ = E/2BΩ⟨τd
i/i⟩ is an EICD velocity, ⟨ρi⟩ =

(2miTi)1/2/ZeB is the ion Larmor radius, and the collision
time is that given in [2]

⟨τd
i/i⟩ = 2.1 × 1013A1/2Ti(eV)

3/2/Z4niλ, (10)

(A: mass number and λ: Coulomb logarithm). Units are τ
in sec, T(eV) in eV, and n in m−3. The “self-diffusion” coef-
ficient ⟨D⊥i⟩ is a half of the thermal diffusivity χ⊥i = κ⊥

i/ni

given in [2]. Note that the ion total radial flux consists of
three parts as Γx

i = niVx − ⟨D⊥i⟩∇ni + ni⟨VEICD⟩.
The radial flow velocity Vx of ion fluid along x is

almost balanced with a force along y as was described,
0 ≈ −ZeBVx + Fy. In an inhomogeneous plasma, the

collision time for an ion is varied during a gyration, and
a “self-friction force” can be induced along the homoge-
neous y direction. Taking account of FLRs for both a test
ion particle and field ion particles, we simply estimate the
friction force along y to a test particle (gyro-phaseΦ) from
field particles (gyro-phase Ψ ) as

Ftp = mi{u⊥(1 + κTρiGΨ−Φ) cosΨ − u⊥ cosΦ}/(τs
i/iKΨ−Φ)

× (1 + κnρiGΨ−Φ)(1 − 3/2κTρiGΨ−Φ), (11)

where κn = ni
−1∇ni, κT = Ti

−1∇Ti, GΨ−Φ = cosΨ − cosΦ,
and τs is the slowing-down time. A function, KΨ−Φ = {1 −
2/3 cos(Ψ−Φ)}3/2, comes from the dependence of τ ∼ |ur|3
(ur: relative velocity), and last terms from τ ∼ T 3/2/n. The
gyro-average friction force is then obtained as

⟨Ftp⟩Ψ,Φ = 0.80miu⊥(κn − κT )ρi/τs
i/i. (12)

Without considering the test-particle FLR, the fric-
tion force becomes ⟨F∗⟩Ψ,Φ = miu⊥ρi(1/2κn − 1/4κT )/τs

i/i.
This part of the force is canceled by reactions of field
particles of the same species. The rest part, ⟨Fnet⟩Ψ,Φ =
miu⊥(0.30κn − 0.55κT )ρi/τs

i/i, can work as a net “self-
friction force” on the ion fluid, which balances in a whole
plasma system analogously to the diamagnetic flow. A re-
sultant momentum equation of the ion fluid including the
“self-friction force” is given by

mini
dVy

dt
= −ZeBniVx − neFe/i

+
1

Ω⟨τi/i
s ⟩

(
0.60Ti

∂ni

∂x
− 1.10ni

∂Ti

∂x

)
. (13)

Neglecting a small Fe/i, a stationary radial flow veloc-
ity becomes Vx = (⟨ρi⟩2/2⟨τs

i/i⟩)(0.6κn − 1.1κT ). Con-
sequently, a null condition for the ion total radial flux,
Γx

i = 0, in an electric field is obtained from Eq. (9)

ZeE = (0.8κn + 2.2κT )Ti, (14)

where ⟨τs
i/i⟩ = ⟨τd

i/i⟩ is assumed for simplicity. If ⟨τs
i/i⟩ ≈

1.2⟨τd
i/i⟩ [3], the null-Γx

i condition is ZeE ≈ (κn+1.8κT )Ti.
Accurate numerical factors for collisional terms in the r.h.s.
of Eqs. (9) and (13) have to be examined in future.

The ion self-diffusion becomes important in the edge
plasma, such as scrape-off layer and divertor region. Elec-
trons are mainly lost in parallel to B, while ions can dif-
fuse perpendicularly. The collision time is very small,
τi < 10−7 s, in the high n > 1020/m3 and low T < 5 eV
(⟨ρi⟩ ∼ 10−4 m for B ∼ 5 T), and ⟨D⊥i⟩ ∼ 0.1 m2/s. Com-
petition between parallel flow and cross-field self-diffusion
affects the plasma profiles in the obliquely-incident B di-
vertor.

[1] K. Miyamoto, Fundamentals of Plasma Physics and Con-
trol. Fusion, sec. 7.1 (Iwanami Book Service Center, Tokyo,
1997).

[2] S.I. Braginskii, Reviews of Plasma Physics vol.1, p.205
(Consultants Bureau, New York, 1965).

[3] B.A. Trubnikov, Reviews of Plasma Physics vol.1, p.105
(Consultants Bureau, New York, 1965).

1203090-2


