Neural Network Data Analysis in the Large Helical Device Thomson Scattering System

Ichihiro YAMADA, Hisamichi FUNABA, Jong-ha LEE1), Yuan HUANG2) and Chunhua LIU2)
National Institute for Fusion Science, Toki 509-5292, Japan
1) Korea Institute of Fusion Energy, Daejeon 34133, Korea
2) Southwestern Institute of Physics, P.O. Box 432, Chengdu, 610041, China

(Received 27 December 2021 / Accepted 8 March 2022)

In Thomson scattering diagnostics systems, a combination of the lookup table and the minimum χ² methods has been widely used to determine electron temperature. The concept of the minimum χ² method is based on clearly defined mathematical statistics. However, the minimum χ² method calculation requires a large amount of time because all χ² values have to be calculated at all temperatures included in the lookup table. Thus, this method is unsuitable for the real-time data analysis required for the next generation of fusion devices, e.g., the International Thermonuclear Experimental Reactor in France. To establish real-time data analysis for Thomson scattering diagnostics, we have developed a neural network program for the large helical device (LHD) Thomson scattering (TS) system. First, we systematically studied the number of nodes and training cycles required to obtain satisfactory results, and then applied them to the LHD TS system. The calculation time was successfully reduced by approximately 1/50 - 1/100 of the χ² method calculation time. In addition, experimental error estimation has been performed according to the concept of the neural network method used in this study.

© 2022 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: Thomson scattering, Large Helical Device (LHD), neural network method, real-time data analysis, electron temperature, error estimation

DOI: 10.1585/pfr.17.2402061

1. Introduction

In forthcoming thermonuclear fusion plasma research, real-time plasma diagnostics is an important issue. In current Thomson scattering (TS) diagnostics, the combined method of using a lookup table and the χ² method has been widely used to determine electron temperature (Tₑ). The concept of the traditional minimum χ² method is based on clearly defined mathematical statistics. However, this method requires a relatively long calculation time because all χ² values have to be calculated at all temperatures included in the lookup table. For example, the Tₑ range and the number of Tₑ points in the large helical device (LHD) TS lookup table are Tₑ = 0.1 eV - 50 keV and 7000 points respectively [1, 2]. Therefore, this method is likely unsuitable for real-time data analysis.

To establish real-time data analysis in TS diagnostics, we applied the neural network (NN) method to determine Tₑ. In the Korea Superconducting Tokamak Research (KSTAR) and Huan-Liuqi-2A (HL-2A) TS systems, this method has already been successfully applied [3, 4]. We developed a new program for the LHD TS system that can be applied to the KSTAR and HL-2A TS systems [5–8]. Section 2 describes the developed NN program, which includes an error estimation procedure according to the concept of the NN method. The application of the developed program in the LHD TS diagnostic is presented in Section 3.

2. The Neural Network Method for Large Helical Device Thomson Scattering Diagnostics

2.1 Fundamentals

NN methods have been widely applied in various scientific fields. Once the training process has been completed in the NN method, calculation time is expected to be reduced even for complicated processes such as nonlinear processes with many input and output parameters. Although the basic concepts of the χ² method and the NN method are quite different, it is expected that the NN method will provide good results through proper training. Figure 1 shows a diagram of the NN program used in this study. In the LHD TS system, Tₑ is determined by five signals experimentally measured using a polychromator with five wavelength channels [1, 2]. Accordingly, the number of input parameters is five and the number of final results Tₑ is one. In this study, the depth of the hidden layer is fixed at one. The sigmoid function, $y = 1/[1 + \exp(-x)]$, is used as the activation function.

In the NN program, input and output parameters are normalized to be non-dimensional values. The exper-
Eqs. (4) and (5):

\[t = \frac{\log(T_e/T_{e\text{min}})}{\log(T_{e\text{max}}/T_{e\text{min}})} \]

where \(t \) means the temperature inside the program, and \(T_{e\text{min}} \) and \(T_{e\text{max}} \) are the minimum and maximum values of \(T_e \) in the used lookup table, respectively. The output from the \(j \)-cell in the hidden layer is given as follows:

\[\alpha_j^B = \frac{1}{1 + e^{-\alpha_j^B}}, \quad \alpha_j^B = \sum_i w_{ij}^B \alpha_i^B + th_j^B, \]

where \(w_{ij} \) is the weight and \(th_j \) is the bias parameter. Similarly, the final output, \(o_i \), is given as follows:

\[\alpha_i^C = \frac{1}{1 + e^{-\alpha_i^C}}, \quad \alpha_i^C = \sum_j w_{ij}^C \alpha_j^C + th_i^C. \]

Once the training process is completed, \(T_e \), can be easily calculated using the NN parameters determined in the training process.

In addition to determining \(T_e \), estimating experimental error (\(\Delta T_e \)) is also important in experimental studies. \(\Delta T_e \) is calculated using the same NN parameters shown in Eqs. (4) and (5):

Error in the final output:

\[(\Delta \alpha_i^C)^2 = \sum_j \left(\frac{\partial \alpha_i^C}{\partial \alpha_j^B} \Delta \alpha_j^B \right)^2 = \sum_j \left((\alpha_i^C (1 - \alpha_i^C) W_{ij}^C) \Delta \alpha_j^B \right)^2. \]

Error in the hidden layer output:

\[(\Delta \alpha_j^B)^2 = \sum_i \left(\frac{\partial \alpha_j^B}{\partial \alpha_i^A} \Delta \alpha_i^A \right)^2 = \sum_i \left((\alpha_j^B (1 - \alpha_j^B) W_{ij}^B) \Delta \alpha_i^A \right)^2, \]

where \(\Delta \alpha_i^C \) is the error of the final output, \(\alpha_i^C \), and \(\Delta \alpha_j^B \) is the error of the hidden layer output, and \(\Delta \alpha_i^A \) is the error of the input layer, i.e., the experimental errors included in the raw experimental signals. The error in the raw data propagates through Eqs. (4) and (5) to the error in the final result.

Based on the above results, we performed the training.
procedure for all polychromators. Figure 4 shows an example of the results for $N_{\text{nodes}} = 10$ and 50. The number of trainings was $N_t = 1 \times 10^5$. The horizontal and vertical axes show the target temperature, T_0, and the calculated temperature, T, respectively. As seen in the Fig. 4, the agreement of T_0 and T is worse in low and high T ranges. This deviation is due to the LHD polychromators are optimized to the temperature range $10 \, \text{eV} \leq T \leq 10 \, \text{keV}$. As expected (see Figs. 2 and 3), no clear difference was observed between the cases of $N_{\text{nodes}} = 10$ and 50. In low- and high-temperature regions, slight deviations between T_0 and T are observed. However, a positive agreement was indicated in the intermediate region. In regard to the normalization of T, a logarithm-type approach (Eq. 1) was used in this study. The KSTAR NN program uses a simple and linear normalization, i.e., $t = T / T_{\text{max}}$, where T is the electron temperature and T_{max} is the maximum temperature in the lookup table [3]. We compared results using the two normalization methods for the LHD TS. No clear or significant difference was observed between the results from the two methods.

3. Application in the LHD TS System

Using the NN parameters determined in the previous section, we calculated T_e and ΔT_e and compared them to those obtained by the traditional minimum χ^2 method. Figures 5(a) and (b) show examples of the T_e profile and the temporal history of T_e at the plasma center, respectively. In both figures, ΔT_e values are also plotted (lower curves). As shown in the figures, the two T_e values derived using the NN and χ^2 methods show good agreement. For the ΔT_e, small deviations are observed near the center high-temperature region. However, the overall agreement is good. Therefore, we consider that the accuracy and reliability of the NN method is as good as those of the χ^2 method.

With regard to calculation time, we first divided the total calculation time, t_T, into four elements: data reading time from an analog-to-digital converter to a personal computer, t_R; preprocessing time (e.g., background signal subtraction), t_P; data analysis time, t_A; and the data writing time to a hard disk drive, t_W; $t_T = t_R + t_P + t_A + t_W$. In the case of the LHD TS system, the ratio is typically $t_R : t_P : t_A : t_W \approx 3:20:30:2$. The NN method was significantly faster than the χ^2 method, $\sim 1/50 - 1/100$ of t_A. The typical total calculation time of a T_e profile including 144 spatial points was ~ 30 msec and $<\sim 1$ msec for the χ^2 and
NN methods, respectively. The other three factors, t_R, t_P, and t_W were the same for both χ^2 and NN data analyses. In future work, we aim to reduce the preprocessing time, t_P, which is the most time-consuming process of the three factors, to further decrease total calculation time.

4. Conclusion

The NN method is one of the candidates for reducing data analysis time in TS diagnostics. We have developed a new program for the LHD TS system. The T_e and ΔT_e values calculated by the NN and minimum χ^2 methods show very good agreement. We consider that the accuracy and reliability of the NN method are as good as those of the χ^2 method. Data analysis time was reduced when the NN program is used for 1/50 - 1/100 that of the χ^2 method. This is an attractive feature for real-time data analysis in TS diagnostics. In addition to this merit, the data memory size required for the NN method is much smaller than that of the lookup table method. The NN method is thus suitable for calculation using a mini-board computer and GPU based system, in which memory size is limited [9].

Acknowledgments

This work was supported by NIFS budget, ULHH005, JSPS KAKENHI, 18K03586, Japan-Korea Fusion Collaboration Program, and JSPS Bilateral Joint Research Projects (Japan-China). This work was conducted in cooperation with “KSTAR Experimental Collaboration and Fusion Plasma Research (KFE-EN2101-12)” Ministry of Science and ICT under KFE R&D Program.

The authors are grateful to the LHD experiment group for their cooperation in the LHD experiments and their useful discussions on TS diagnostics.