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In Thomson scattering diagnostics systems, a combination of the lookup table and the minimum χ2 methods
has been widely used to determine electron temperature. The concept of the minimum χ2 method is based on
clearly defined mathematical statistics. However, the minimum χ2 method calculation requires a large amount
of time because all χ2 values have to be calculated at all temperatures included in the lookup table. Thus, this
method is unsuitable for the real-time data analysis required for the next generation of fusion devices, e.g., the
International Thermonuclear Experimental Reactor in France. To establish real-time data analysis for Thomson
scattering diagnostics, we have developed a neural network program for the large helical device (LHD) Thomson
scattering (TS) system. First, we systematically studied the number of nodes and training cycles required to obtain
satisfactory results, and then applied them to the LHD TS system. The calculation time was successfully reduced
by approximately 1/50 - 1/100 of the χ2 method calculation time. In addition, experimental error estimation has
been performed according to the concept of the neural network method used in this study.
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1. Introduction
In forthcoming thermonuclear fusion plasma research,

real-time plasma diagnostics is an important issue. In cur-
rent Thomson scattering (TS) diagnostics, the combined
method of using a lookup table and the χ2 method has been
widely used to determine electron temperature (Te). The
concept of the traditional minimum χ2 method is based
on clearly defined mathematical statistics. However, this
method requires a relatively long calculation time because
all χ2 values have to be calculated at all temperatures in-
cluded in the lookup table. For example, the Te range and
the number of Te points in the large helical device (LHD)
TS lookup table are Te = 0.1 eV - 50 keV and 7000 points
respectively [1, 2]. Therefore, this method is likely unsuit-
able for real-time data analysis.

To establish real-time data analysis in TS diagnos-
tics, we applied the neural network (NN) method to deter-
mine Te. In the Korea Superconducting Tokamak Research
(KSTAR) and Huan-Liuqi-2A (HL-2A) TS systems, this
method has already been successfully applied [3, 4]. We
developed a new program for the LHD TS system that can
be applied to the KSATR and HL-2A TS systems [5–8].
Section 2 describes the developed NN program, which in-
cludes an error estimation procedure according to the con-
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cept of the NN method. The application of the developed
program in the LHD TS diagnostic is presented in Section
3.

2. The Neural Network Method for
Large Helical Device Thomson
Scattering Diagnostics

2.1 Fundamentals
NN methods have been widely applied in various sci-

entific fields. Once the training process has been com-
pleted in the NN method, calculation time is expected to
be reduced even for complicated processes such as non-
linear processes with many input and output parameters.
Although the basic concepts of the χ2 method and the
NN method are quite different, it is expected that the NN
method will provide good results through proper training.
Figure 1 shows a diagram of the NN program used in this
study. In the LHD TS system, Te is determined by five sig-
nals experimentally measured using a polychromator with
five wavelength channels [1, 2]. Accordingly, the number
of input parameters is five and the number of final results
Te is one. In this study, the depth of the hidden layer is
fixed at one. The sigmoid function, y = 1/[1+ exp(−x)], is
used as the activation function.

In the NN program, input and output parameters are
normalized to be non-dimensional values. The exper-
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Fig. 1 Diagram of the NN program.

imentally obtained signal intensities are normalized as
oi = si/Σsi. Electron temperature Te is normalized by a
logarithm-type normalization as follows:

t =
log(Te/T min

e )

log(T max
e /T min

e )
, (1)

where t means the temperature inside the program, and
T min

e and T max
e are the minimum and maximum values of

Te in the used lookup table, respectively. The output from
the j-cell in the hidden layer is given as follows:

oB
j =

1

1 + e−α
B
j
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∑
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i jo
A
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where wi j is the weight and th j is the bias parameter. Sim-
ilarly, the final output, ok, is given as follows:

oC
k =

1
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k

, αC
k =
∑

j
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jkoB
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j . (3)

Once the training process is completed, Te, can be eas-
ily calculated using the NN parameters determined in the
training process.

In addition to determining Te, estimating experimen-
tal error (ΔTe) is also important in experimental studies.
ΔTe is calculated using the same NN parameters shown in
Eqs. (4) and (5):
Error in the final output:
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Error in the hidden layer output:
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where ΔoC
k is the error of the final output, oC

k , and ΔoB
j is

the error of the hidden layer output, and ΔoA
i is the error

of the input layer, i.e., the experimental errors included in
the raw experimental signals. The error in the raw data
propagates through Eqs. (4) and (5) to the error in the final
result.

Fig. 2 Averaged error as a function of the number of nodes
(Nnodes). The errors are estimated in the Te range, Te =

10 eV - 10 keV.

2.2 Training procedure
As a teacher data, we used a lookup table similar to

that used in calculations employing the χ2 method. In this
study, we used a limited lookup table for which the Te

range and the number of Te values are Te = 1 eV - 50 keV
and 1000, respectively, to reduce training time. The initial
values of the NN parameters, i.e., w and th, were set as
random values between −1 and +1. Before performing the
final training course, we determined the number of nodes,
and the number of required trainings.

We first examined how many nodes were needed. The
accuracy of the result provided by the NN program was
studied systematically for the number of nodes: Nnodes =

1 - 100. Figure 2 shows the dependence of the averaged
error for Nnodes, ΔTe = |Te − T 0

e |/T 0
e estimated for T 0

e =

10 eV - 10 keV. In addition, we examined two types of nor-
malization for experimental signals in the input layer: (1)
o1

i = si/Σsi and (2) o1
i = si/max(si), where o1

i is the nor-
malized signal intensity and si is the raw signal (i = 1 - 5).
As shown in Fig. 2, no significant difference was observed
between the two normalization methods. Here, Nnodes of
∼3 was insufficient and the deviation was large. However,
this rapidly decreased from Nnodes ∼ 5 and no significant
improvement was observed for Nnodes >∼ 10. Accordingly,
we concluded Nnodes = 10 to be sufficient for our case.
Moreover, we examined the convergence property of the
accuracy as a function of the number of training cycles.
Figure 3 shows the results for Nnodes = 3, 6, 10, and 50.
In the initial stage, the averaged error rapidly decreased
as the number of training cycles increased. However, the
convergence property for Nnodes = 3 is poor. After the first
drop, this slowly decreased even when the number of train-
ing runs increased. For the other cases, i.e., Nnodes = 6, 10,
and 50, the averaged error decreased to below 1% as the
number of training cycles increased (Ntr ≥ 106). No signif-
icant difference was seen among the results for Nnodes = 6,
10, and 30 at Ntr ≥ 2.5 × 106, as expected (see Fig. 2).
Therefore, we consider 1 × 106 training cycles sufficient if
Nnodes ≥ 6.

Based on the above results, we performed the training
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Fig. 3 Averaged error as a function of the number of nodes (Ntr)
for Nnodes = 3, 6, 10, and 30.

Fig. 4 Comparison between target temperature T 0
e and final re-

sult Te after completing the training course for Nnode = 10
(blue) and 50 (red).

procedure for all polychromators. Figure 4 shows an ex-
ample of the results for Nnodes = 10 and 50. The number
of trainings was Ntr = 1 × 106. The horizontal and vertical
axes show the target temperature, T 0

e , and the calculated
temperature, Te, respectively. As seen in the Fig. 4, the
agreement of T 0

e and Te is worse in low and high Te ranges.
This deviation is due to the LHD polychromators are opti-
mized to the temperature range 10 eV≤ Te ≤ 10 keV. As
expected (see Figs. 2 and 3), no clear difference was ob-
served between the cases of Nnodes = 10 and 50. In low-
and high-temperature regions, slight deviations between
T 0

e and Te are observed. However, a positive agreement
was indicated in the intermediate region. In regard to the
normalization of Te, a logarithm-type approach (Eq. 1) was
used in this study. The KSTAR NN program uses a simple
and linear normalization, i.e., t = Te/T max

e , where Te is the
electron temperature and T max

e is the maximum tempera-
ture in the lookup table [3]. We compared results using
the two normalization methods for the LHD TS. No clear
or significant difference was observed between the results
from the two methods.

3. Application in the LHD TS System
Using the NN parameters determined in the previous

Fig. 5 (a) Comparison of Te profiles obtained by NN and χ2

methods. Estimated ΔTe values are also plotted.

Fig. 5 (b) Comparison of time histories of Te at the plasma cen-
ter obtained by the NN and minimum χ2 methods.

section, we calculated Te and ΔTe and compared them to
those obtained by the traditional minimum χ2 method. Fig-
ures 5 (a) and (b) show examples of the Te profile and the
temporal history of Te at the plasma center, respectively.
In both figures, ΔTe values are also plotted (lower curves).
As shown in the figures, the two Te values derived using
the NN and χ2 methods show good agreement. For the
ΔTe, small deviations are observed near the center high-
temperature region. However, the overall agreement is
good. Therefore, we consider that the accuracy and re-
liability of the NN method is as good as those of the χ2

method.
With regard to calculation time, we first divided the

total calculation time, tT, into four elements: data read-
ing time from an analog-to-digital converter to a personal
computer, tR; preprocessing time (e.g., background signal
subtraction), tP; data analysis time, tA; and the data writ-
ing time to a hard disk drive, tW; tT = tR + tP + tA + tW.
In the case of the LHD TS system, the ratio is typically
tR:tP:tA:tW ≈ 3:20:30:2. The NN method was significantly
faster than the χ2 method, ∼1/50 - 1/100 of its tA. The typi-
cal total calculation time of a Te profile including 144 spa-
tial points was ∼30 msec and <∼1 msec for the χ2 and

2402061-3



Plasma and Fusion Research: Regular Articles Volume 17, 2402061 (2022)

NN methods, respectively. The other three factors, tR, tP,
and tW were the same for both χ2 and NN data analyses.
In future work, we aim to reduce the preprocessing time,
tP, which is the most time-consuming process of the three
factors, to further decrease total calculation time.

4. Conclusion
The NN method is one of the candidates for reducing

data analysis time in TS diagnostics. We have developed a
new program for the LHD TS system. The Te and ΔTe val-
ues calculated by the NN and minimum χ2 methods show
very good agreement. We consider that the accuracy and
reliability of the NN method are as good as those of the χ2

method. Data analysis time was reduced when the NN pro-
gram is used for 1/50 - 1/100 that of the χ2 method. This is
an attractive feature for real-time data analysis in TS diag-
nostics. In addition to this merit, the data memory size re-
quired for the NN method is much smaller than that of the
lookup table method. The NN method is thus suitable for
calculation using a mini-board computer and GPU based
system, in which memory size is limited [9].
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