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We perform the principal verification of reconstructing object surface images by using deep learning. Using
the deep learning neural network based on convolutional neural networks, simple object surface images with
128 x 128 pixels are reasonably reconstructed with up-converting from rough microwave signal images with
16 x 16 pixels. The model captures large structural features of the object surface images even with small number
of training data. As the number of training data increases, it captures small structures of objects. It is also found
that noises of input signal images affect reconstructions of small structures of objects.
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1. Introduction

In nuclear fusion research, one of interesting topics
is plasma turbulence. Plasma turbulence is related to the
structure formation of the plasma which determines the
overall plasma confinement [1,2]. Various measurement
techniques have been studied for the experimental obser-
vation of plasma turbulence [3-7]. While the spatial reso-
lution of visible light measurements is generally high, the
position identification in the line-of-sight direction is diffi-
cult. For microwave measurements, position identification
in the line-of-sight direction is generally possible by phase
measurement, but the spatial resolution is not enough to
discuss the turbulent structure due to its wavelength. To
overcome above weakness, we have proposed lens-less mi-
crowave imaging.

The lens-less imaging has been developed in recent
years and is also known as digital holography [8,9]. In our
imaging method called “lens-less microwave holography”,
microwaves are injected into the object and the reflected
microwaves are directly received by an antenna array. Due
to no focus, it is necessary to reconstruct an object image.
This is not easy because this is an ill-conditioned inverse
problem due to the low resolution of the detector. How-
ever, we succeeded it in a preliminary experiment [10]. If
we are able to reconstruct an object image of any resolu-
tion, we will be able to obtain a various size of plasma spa-
tial structure. This is a great advantage. In addition, this
method is easy to setup because there is no need to build
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an optical system.

In the previous paper [10], we reconstructed an object
image by using mathematical method, which takes long
computing time. In this paper, we try to apply deep learn-
ing for fast image reconstruction.

2. Method
2.1 Objects

It is difficult to obtain sufficient data for deep learn-
ing with real measurements. Therefore, we performed the
electromagnetic wave calculations to make received mi-
crowave signals [11].

Since the final goal is to observe turbulence, it is nec-
essary to set an object with a multi-scale structure, but this
time, as a first step, we considered a mirror-like object with
a protrusion shown in Fig. 1. The footprint of the protru-
sion is set to elliptical, whose length of major and minor
axis are randomly set in the range of 1 mm to 65 mm, re-
spectively. The protrusion shape is a Gaussian function
like, whose top is 1 mm height. The position and the ro-
tation angle of the protrusion are also randomly set. The
reflectance of the object is set to 1. Thirty gigahertz mi-
crowave is irradiated to the object and completely reflected
at the surface of the object. The reflected microwave sig-
nals are received by an antenna array [12]. The antenna
array consists of horn antennas arranged in 16 X 16 pieces,
with each antenna having a size of 10 mm square.

We randomly changed the structure of protrusion and
calculated the corresponding received microwave signals.
We repeated calculations to make 5100 sets of objects and
corresponding received microwave signals. We divided
these data into the training data set and the test data set.

© 2022 The Japan Society of Plasma
Science and Nuclear Fusion Research



Plasma and Fusion Research: Regular Articles

Volume 17, 2401072 (2022)

; = mm
/i Prétrusion

! 1

Reflected

/\/-\-/\/ wave 100mm
//__Q Incident

T wave
g i
g J: i =
S-cdecccioocio oo Ieradiation
.
. i antenna
/ Receiving antenna arr&ll/
160mm

Fig. 1 Layout used for the electromagnetic wave calculation.
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Fig. 2 (a) Received microwave signals, (b) object surface im-
ages and (c) corresponding reconstructed surface images
by models with different numbers of training data. The
input channels take absolute values of complex ampli-
tudes. The numbers above images show the numbers of
training data.

The test data set includes 100 data. The number of training
data is a scan parameter. In the case that the number of
training data is less than 5000, the training data is selected
randomly from 5000 data. The test data is fixed to compare
the specifications of the models. As example, the typical 8
test data is shown in Figs. 2, 3, 5 and 6.

2.2 Network configuration

We used convolutional neural network (CNN) as the
neural network for deep learning, which is one of the most
used neural networks for image recognition. CNNs have
the advantage of being able to take multiple channels for
input images. Since intensities and phases are observed
in microwave measurements, received signals can be writ-
ten in terms of complex amplitudes. We tried two patterns
as input channels, absolute values of complex amplitudes,
real and imaginary part of complex amplitudes. The im-
age of received microwave signals is input into the network
with 16 X 16 pixels. It passes through a convolutional layer
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Fig. 3 (a) Received microwave signals, (b) object surface im-
ages and (c) corresponding reconstructed surface images
by models with different numbers of training data. The
input channels take real part and imaginary part of com-
plex amplitudes. The numbers above images show the
numbers of training data.
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Fig. 4 Loss dependence on the number of training data.

(karnel size: 6 X 6, number of filters: 50) and a max pool-
ing layer (window size: 2 X 2). After that, it passes through
3 layers of the fully connected layer which contains 50 per-
ceptron and one reshape layer. As for the activation func-
tion, four functions (relu, linear, tanh, sigmoid) were tried
in advance. Then, tanh function was adopted because it
showed the lowest loss of the loss function. Here, the loss
function is the mean squared error. After passing through
the reshape layer, a predictive image of object surface is
outputted with 128 x 128 pixels. This means that the out-
put image is upconverted from the input image.

3. Results

3.1 Reconstruction with different number of
training data
Figures 2 and 3 show (a) input images of received mi-
crowave signals, (b) object surface images and (c) output
images of surface predicted by models with different num-
bers of training data. The input channels take absolute val-
ues of complex amplitudes (Fig. 2) and real part and imag-

2401072-2



Plasma and Fusion Research: Regular Articles

Volume 17, 2401072 (2022)

(a) Received signal

0.0 0.01 002 004 008 0.

3 0.8

o
z

Reconstructe

~
=
~

s =
—
= 3
o
uQ
[¢)]

0.0 0.01 0.02

e
=
=4
g
@

N

Fig. 5 (a) Received microwave signals and (b) corresponding re-
constructed surface images when noises are added. The
input channels take absolute values of complex ampli-
tudes. The numbers above images show the noise levels.

inary part of complex amplitudes (Fig. 3). The color bars
mean normalized intensities in (a), surface positions in the
depth direction in (b) and (c). The numbers above images
show the numbers of training data used for each model.

Both figures show that reconstructed images capture
features of object images. As the number of training data
increases, it is clear that small structures of objects are well
reproduced.

Figure 4 shows loss dependence on the number of
training data. It is shown that the loss becomes lower with
the increase of the number of training data. Moreover,
the loss is lower for complex-input than for absolute-input.
This result suggests that two types of data (real-imaginary
part) are more informative than one type of data (absolute
value).

3.2 Noise tolerance

Since actual experimental data always contain noises,
it is necessary to know how much noises affects reconstruc-
tions.

Random noises were added to received microwave
signals. Figures 5 and 6 show (a) input images of re-
ceived microwave signals and (b) corresponding recon-
structed surface images when noises are added. The ob-
jects are the same as in Figs. 2 and 3 and are arranged in the
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Fig. 6 (a) Received microwave signal and (b) corresponding re-
constructed images when noises are added. The input
channels take real and imaginary part of the complex am-
plitude. The numbers above images show the noise lev-
els.

same way. Figure 5 is absolute-input and Fig. 6 is complex-
input. Colors show the same parameters as in Figs. 2 and 3.
The number of training data is 5000. The numbers above
images show the noise levels. The noise level 0 means no
noise and noise level 1 means that the noise intensity is
equal to the signal intensity. It is seen that input images
are collapsed as added noises increases. It is found that the
increase of noises makes it difficult to reconstruct small
structures of objects.

Figure 7 shows the effect of noises on the loss func-
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Fig. 7 Effect of noises on loss function.

tion. It is seen that the loss increases with an increase of
noises. The increase in the loss is lower for the complex-
input than for the absolute-input. This result indicates that
the complex input is more tolerant to noise.

4. Summary

Deep learning method with CNN is applied for the im-
age reconstruction of microwave holography. Simple ob-
ject surface images are reasonably reconstructed with up-
converting from rough input signal images. It was found
that the model can capture large structural features even
with a small number of training data. As the number of

training data increased, it can also capture small structural
features. Moreover, it was found that two types of input
data (real-imaginary part) are better than one type of in-
put data (absolute values). Reconstruction calculations on
a trained model takes about milliseconds computing time,
and could be applied for real-time feedback, etc in future.
Next, we will attempt to reconstruct more plasma-like ob-
jects.

Acknowledgements
This work is performed with the support and under

the auspices of the NIFS Collaboration Research program
(NIFS20KLEP036).

[1] T. Yamada et al., Nature Phys. 4, 721 (2008).

[2] S-I Itoh, Plasma Fusion Res. 4, 038 (2009).

[3] T. Munsat, E. Mazzucato and H. Park, Rev. Sci. Instrum.

74, 1426 (2003).

[4] S. Yamaguchi et al., Rev. Sci. Instrum. 77, 10E930 (2006).

[51 W. Lee et al., JINST 7, C01070 (2012).

[6] M. Muscatello et al., Rev. Sci. Instrum. 85, 11D702 (2014).

[7]1 H. Tsuchiya et al., Plasma Fusion Res. 13, 3402063 (2018).

[8] B. Sun et al., Science 340, 844 (2013).

[9] J. Wu et al., Light: Science & Applications 9, 53 (2020).
[10] H. Tsuchiya et al., Plasma Fusion Res. 14, 3402146 (2019).
[11] M. Koga et al., Plasma Fusion Res. 16, 1402063 (2021).
[12] Y. Nagayama et al., Rev Sci. Instrum. 88, 044703 (2017).

2401072-4



