
Plasma and Fusion Research: Regular Articles Volume 17, 1405098 (2022)

Feasibility Study of Line Integrated Backward Thomson
Scattering Measurement in Nuclear Fusion Reactors

Yu-Ting LIN, Akira EJIRI, Kouji SHINOHARA, Yi PENG and Seowon JANG
The University of Tokyo, Kashiwa 277-8561, Japan

(Received 19 May 2022 / Accepted 21 July 2022)

In order to control or suppress edge localized modes in nuclear fusion reactors, an accurate pedestal pressure
profile measurement is necessary. A line integrated backward Thomson scattering measurement is an attractive
method because of its long scattering length. Assuming that the first mirror is located far from the plasma to
avoid degradation of the mirror due to erosion and impurity deposition, the measurement accuracies of density
and temperature and pressure are estimated. For the target plasma, we adopt the pedestal profile with the shoulder
density of 1019 - 1020 m−3 and the dimensions of the JA DEMO reactor. The calculation results show that, the
Poisson noise due to finite detected scattered photon number is much larger than that due to bremsstrahlung emis-
sion. In addition, noise is enhanced by reconstruction process. The resultant total noise levels of reconstructed
density, temperature and pressure profiles are at most 1.5%, 3%, 3%, respectively in the steep gradient region,
and this method is feasible in the reactor.
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1. Introduction
One of critical issues in nuclear fusion reactor diag-

nostics is the development of a measurement method of
edge pedestal pressure profile. Due to the harsh environ-
ment and the required high reliability, a new measurement
method should be developed. In this paper we present a
feasibility study of edge pedestal electron temperature and
density profile measurement using a line integrated back-
ward Thomson scattering method.

The high confinement mode (H-mode) provides a nec-
essary confinement regime for reactor scale tokamak fu-
sion devices. In an H-mode, the edge steep pressure gra-
dient often shows bursty edge instability called edge lo-
calized modes (ELMs) [1]. Particles and energy expelled
by ELMs would significantly shorten the lifetime of the
divertor plate. Therefore, ELM control or suppression is
necessary for long pulse or steady state operation.

The stability of ELMs is determined by the pres-
sure gradient driven ballooning mode and current driven
peeling mode [2], which can be evaluated by measuring
pedestal density and temperature profile. In ITER the re-
quired accuracy and the spatial resolution are 5%, 5 mm
(∆ψN ∼ 0.04) and 10%, 5 mm (∆ψN ∼ 0.04) for density
and temperature profiles, where ψN is normalized poloidal
flux [3]. A Thomson scattering (TS) measurement is ex-
pected to satisfy these requirements in ITER, but it is be-
lieved to be difficult in fusion reactors because of the small
solid angle of the first mirror. The first mirror should be lo-
cated far from the plasma to avoid its degradation by high
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neutron flux and strong erosion and impurity deposition. In
the study of EU DEMO, it is reported that the first mirror
should be located behind a thin tube to avoid the degrada-
tion (Fig. 1). The ratio between the tube length (L) and the
radius (r) should be over 50 [4] for visible light measure-
ment. With such a tube the solid angle becomes very small
(∼ 1 × 10−3 sr). Under this constraint, the standard edge
Thomson scattering configuration with a horizontal laser
beam and collection optics in an equatorial port [5] would
show a poor performance as described later. In contrast,
a line integrated backward Thomson scattering can have a
long scattering length. In order to obtain spatial profile,
however, the measurement with many integration chords is
necessary to reconstruct the profiles. A LIDAR [6] is an at-
tractive method, but the maximum spatial resolution can be
achieved nowadays is ∼ 70 mm [7], which is much larger
than required spatial resolution. For LIDAR system with
vertical laser beam, the required spatial resolution is re-
laxed, but it seems to be still smaller than achievable value
as shown later.

In this paper, the feasibility of a line integrated back-
ward Thomson scattering measurement is studied. A sin-
gle lens model for estimating the sensitivity is described in
Sec. 2. Estimation of line integrated Thomson scattering
and background radiation signals are presented in Sec. 3.
Reconstruction method of ne, Te profiles and their noise
levels are shown in Sec. 4. Conclusions are given in Sec. 5.

c⃝ 2022 The Japan Society of Plasma
Science and Nuclear Fusion Research
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2. Concepts and Calculation Method
As the target device, we assume the JA DEMO reactor

design [8]. The laser beam is injected from the upper port
and the backward scattered light is collected by the first
mirror located in the upper port. To satisfy the condition
on the tube dimension [4], L and r are L = 10 m, r = 0.2 m,
and the distance from the midplane to the tube entrance is
3 m (Fig. 1 (a)). Using a nearly vertical laser beam and an
integration chord, a relatively long scattering length is ex-
pected. In the case of a standard horizontal laser beam
configuration (Fig. 1 (b)), however, the maximum scatter-
ing length is limited by the required spatial resolution. Al-
though a long scattering length (∼ 1 m) is possible in the
line integrated backward TS system, profile reconstruction
is necessary, which may enhance the error, and we evalu-
ate the errors including such an effect. In this paper, the
profiles along the major radius are given as

ne(R) = ne0 ×
[
Tanh(2(Rgn − R)/Rwn) + 1

]
/2, (1)

Fig. 1 Schematic diagram of (a) a line integrated backward TS
system and (b) a standard TS system.

Te(R) = Te0 ×
[
Tanh(2(RgT − R)/RwT ) + 1

]
/2, (2)

where ne0, Te0 represent pedestal shoulder density and tem-
perature, R represents major radius, Rgn = 10.85 m and
Rwn = 0.12 m are fixed parameters indicating the steep den-
sity gradient position and the density gradient width, re-
spectively. RgT = 10.85 m and RwT = 0.24 m represent the
similar parameters for the temperature. The profile shapes
are expressed by similar function as that used in [9], and
the above parameters are chosen based on Ref. [10]. The
density and temperature at off-midplane position (Z , 0) is
obtained by assuming that the magnetic flux surfaces (We
assume equi-density and equi-temperature on the surfaces)
are given by

Rm(a, θ) = R0 + a cos(θ + δ sin(θ)), (3)

Zm(a, θ) = κ × a sin(θ), (4)

R0 = 8.5 m represents plasma major radius, a = 2.42 m
represents plasma minor radius, δ = 0.33 represents tri-
angularity, κ = 1.65 represents elongation, θ represents
poloidal angle. By adjusting minor radius a = 0 ∼ 2.42 m,
a series of magnetic surfaces are defined, then density and
temperature profile at equatorial plane can be extended to
off-midplane position.

Figure 2 shows the prepared pedestal profile, in which
ne0 = 0.9 × 1020 m−3 and Te0 = 8 keV. The measurement
major radius range is R = 10.69 ∼ 11.02 m to cover the
whole pedestal region. The first (collection) mirror has
roughly the same width (r = 0.2 m) as the measurement
range. The pedestal width in radial direction is roughly
120∼ 240 mm. We set 10 spatial points to be measured
in the steep gradient region shown by red dashed lines in
Fig. 2, and the target spatial resolution is 12 mm.

Figure 3 (a) shows the schematic drawing of the op-
tical configuration of Fig. 1 (a). The concave mirror is re-
placed by a thin lens with radius rl = 0.2 m. A fiber with

Fig. 2 Target plasma density and temperature profiles. The red
dashed lines indicate the high-pressure gradient region.
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Fig. 3 (a) Schematic diagram of single lens model, (b) lens ra-
dius limit Ωlens, (c) fiber radius limit Ω f iber and (d) nu-
merical aperture limit ΩNA.

numerical aperture NA = 0.25 and diameter d = 2 mm is
used [11]. We use the following thin lens formula

1
f
=

1
Z f
+

1
Zp
, (5)

where f is the focal length, Z f is distance from fiber to lens,
Zp (= 13 m) is distance from lens to fiber image located at
the midplane. The image size is d × Zp/Z f .

Based on this single lens model, the sensitivity of col-
lection optics for laser chord is defined as

∆(R) =
∫ zmax

zmin

Ω(Z)dZ. (6)

Where Ω(Z) is the solid angle profile within the plasma
region (Zmin < Z < Zmax), and Z represents the vertical
coordinate along the laser beam. Zmin and Zmax represents
the vertical boundaries of the plasma, and they depend on
R. Here we assume Ω(Z) is independent of R, and all the
chords (at different R) has the same optical configuration.
This situation can be approximately achieved by tilting the
optical components around the center of the collection lens
(or concave mirror). The solid angle Ω(Z) is limited by the
following three reasons. (1) The scattering light should hit
the collection lens (i.e., concave mirror in the actual con-
figuration), which will limit Ωlens (Fig. 3 (b)), (2) The light
should enter the fiber, and this condition is equivalent to the
situation that the scattered light (or its straight extension)
should pass through the fiber image with size d × Zp/Z f

at Z = 0, and this condition limits Ω f iber (Fig. 3 (c)), (3)
The incident angle of the light entering the fiber should be
smaller than the angle determined by NA, this limits ΩNA

(Fig. 3 (d)). Then three constraints formula for solid angle
are given in following

Ωlens =
πr2

l

(Zp − Z)2
≡

A2
l

(Zp − Z)2
, (7)

Ω f iber =
πr2

f

Z2
≡ B2

Z2
, r f =

d
2

Zp

Z f
, (8)

ΩNA =
πr2

n

(Zp − Z)2
≡

A2
N

(Zp − Z)2
,

rn =
d
2
+ z f NA ≈ z f NA. (9)

Here we define A2
l ≡ πr2

l , B2 ≡ π(dZp/2Z f )2 and A2
N ≡

π(Z f NA)2 to clarify the derivation shown later. Equa-
tions (7), (8) and (9) represent the solid angles spanned by
the lens, the fiber image and the numerical aperture pro-
jection on lens on scattering source at Z. r f in Eq. (8) is
the fiber image radius. rn in Eq. (9) is the radius of fiber
numerical aperture projection on the lens. The solid angle
profile is then given by

Ω(Z) = min(Ωlens , Ω f iber, ΩNA). (10)

Figure 4 (a) shows the solid angle profile calculated
at the normalized minor radius ρ = 0.95 (R = 10.79 m),
and conditions of Ωlens and ΩNA becomes the same when
rl/Z f = NA (Z f = 0.77 m). Under this situation, the thin
lens covers collection cone spanned from fiber, whose size
is decided by NA, and sensitivity of collection optics is op-
timized as described in the following.

In order to evaluate different optical configurations
and to find an optimum, we introduce a sensitivity, which
is a line integrated solid angle. This is often used to eval-
uate the efficiency of a Thomson scattering system. The
sensitivity is the area of the solid curve shown in Fig. 4 (a).
The central region including Z = 0 is limited either by
Ωlens or ΩNA, and both has the same Z dependences but
Z f dependences are different. To deal both cases we use
A to represent either Al or AN . The edge region is limited
Ω f iber, which depends on Z and Z f . To obtain the sen-
sitivity we should calculate Z−integration at the three re-
gions, which are divided by two intersection points Z = Z±
(Z+ > 0, Z− < 0). The actual expressions of Z± depends
on which of Ωlens and ΩNA are the limiting condition, and
the expressions for Z± (= Zl± or ZN±) are given later. Then
the sensitivity is given as

∆ =

∫ Z+

Z−

A2

(Zp − Z)2
dZ +

∫ Z−

−L

B2

Z2
dZ+

∫ L

Z+

B2

Z2
dZ

= A2 Z+ − Z−
(Zp − Z+)(Zp − Z−)

+ B2 Z− − Z+
Z+Z−

− B2 2
L

= − 2B2

Z+Z−
(Z+ − Z−) − 2B2

L
=

4AB
Zp
− 2B2

L
, (11)
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Fig. 4 (a) Solid angle profile along laser path, (b) sensitivity pro-
file under fiber radius and numerical aperture constraint
and (c) solid angle profile within pedestal region.

where ±L are the boundary positions along laser path
(Fig. 4 (a) red dash lines). To obtain the final line in
Eq. (11) we used the following relationship obtained from
the intersection condition Ωlens or ΩNA = Ω f iber.

A
Zp − Z±

= ± B
Z±

, Z± = ±
B

A ± B
Zp. (12)

Using the definition of Al, AN , B, we obtain the following
sensitivities of ∆lens and ∆NA.

∆lens =
2πrld

Z f
− 2π

L

(
d
2

Zp

Z f

)2

, (13)

∆NA = 2πdNA − 2π
L

(
d
2

Zp

Z f

)2

. (14)

We should choose smaller one of these, because it limits
the sensitivity, but the choice depends on Z f as shown in
Fig. 4 (b). When we compare Eqs. (13) and (14), the first
term of ∆lens is a decreasing function of z f while that of
∆NA is constant. Both becomes the same as Z f 0 = rl/NA
(Z f 0 = 0.77 m for the present configuration). If Z f is
smaller than Z f 0. ∆NA < ∆lens, then we should adopt
∆NA. Since ∆NA is the increasing function of Z f , Z f 0 yields
the highest sensitivity in this region Z f < Z f 0. Although
∆lens is a decreasing function of Z f , such a behavior de-
pends on parameters d, Zp, L, and a few times difference in
one of these parameters can make ∆lens an increasing func-
tion of Z f . We assumed that L is long enough to satisfy
L > |Z±|, but this is not always true as shown in Fig. 4 (c).
Figure 4 (c) shows solid angle profile within plasma range
under different radial position R, two boundary points of
solid angle profile at each radial position R represent L±.
At R = 10.75 m L > |Z±| is satisfied, in pedestal re-
gion R = 10.82 ∼ 10.9 m L > |Z+| and L < |Z−|, and
at R = 10.97 m L < |Z±|. We calculated ∆, and then
Z f = Z f 0 yielded the optimum configuration. The solid
angle is not uniform along laser chord, which implies that
solid angle will be a weight function in the integration of
line-integrated signal. But since solid angle profile is rather
flatten instead of peak-like profile, so this measurement is
considered as nearly line-integrated measurement.

In the above calculation, the solid angle profile is cal-
culated on optical axis with thin lens formula. In practice
the laser beam has a finite beam width, and if a spherical
mirror is used to collect the scattering light, then aberration
may degrade the solid angle profile. These two factors are
discussed in the following.

The finite beam width has most impact on numeri-
cal aperture constraint ΩNA. When we take into account
this impact, ΩNA is expressed as ΩNA = ANA/(Z2 + Y2),
where ANA represents area of overlapped region between
fiber image and collection cone of scattering source, and
Y represents off-axis distance of scattering source. So as
off-axis distance increases, the overlapped region between
fiber image and collection cone of scattering source may
quickly decrease, which is shown in Fig. 5 (a). A Gaus-
sian beam waist radius of 0.5 mm in plasma pedestal re-
gion is feasible, because the beam divergence is 10−3 rad
(for the wavelength of 1 µm) and the radius at the mirror
is about 6.5 mm, which is much smaller than the mirror ra-
dius of 200 mm. Figure 5 (b) shows the off-axis effect on
the solid angle for off-axis distance of 5 mm. The effect is
negligible when the distance is 5 mm, which is an extreme
case (beam waist radius of 5 mm, much larger than 0.5 mm
case). Therefore, in this research, the solid angle profile
will be approximated using on-axis case.

For a spherical mirror, aberration is caused by dif-
ferent focal position of non-paraxial and paraxial incident
light. Using the variables defined in Fig. 6 (a), the relation-
ship between a non-paraxial focal length f ′ and the parax-
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Fig. 5 (a) Schematic diagram of impact of finite beam width, (b)
comparison of solid angle profile under different off-axis
cases.

ial focal length f is given by

f ′ = 2 f − (2 f )2

2((2 f )2 − h2)1/2
, (15)

where h is the height of the non-paraxial light. This change
in f moves the fiber image position and its effect can be
easily calculated for a given h. Then overall solid angle
profile is given by

Ω(Z)=
∫ hmax=0.2

0
dΩ(Z, h), (16)

Ω(Z, h)=min(Ωlens(Z) , ΩNA(Z), Ω f iber(Z, h)), (17)

where dΩ(Z, h) is the contribution of the light hitting the
lens at h ∼ h + dh to the solid angle. Note that Ωlens and
ΩNA become the same at Z f = Z f 0. Figure 6 (c) shows
the comparison of solid angle profile by assuming parax-
ial condition and considering aberration effect (on varying
the fiber image position). The solid angle profile has no
significant distortion within the range −1 m < Z < 1 m.
Therefore, in this research paraxial assumption is taken for
simplicity.

In this section, a single lens model is used to estimate
the solid angle profile and sensitivity of collection optics.
It is shown that the solid angle profile in pedestal region
is nearly line-integrated, and finite beam width and spher-
ical aberration can be neglected in this research. Figure 7
shows the sensitivity profiles within the pedestal region.
The sensitivity in the line integrated TS is at least 2 or-
ders of magnitude larger than that of a standard TS due to
the extended scattering length, and the sensitivity profile is
rather uniform. Here the sensitivity of the standard TS is

Fig. 6 (a) Schematic diagram of aberration of spherical mirror,
(b) schematic diagram of aberration simulated in thin lens
model, (c) solid angle profile under paraxial case and
non-paraxial (aberration) case.

Fig. 7 Comparison of sensitivity profile between line integrated
background TS and standard TS configuration.
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calculated assuming scattering length is 12 mm to satisfy
the requirement on the spatial resolution (of 12 mm).

3. Estimation of Signal Level
Two noise components are considered in this research,

(1) Poisson noise and (2) plasma background radiation. In
this study, we did not consider the stray light, because the
effect depends on the detail of designs. Here, we show
several factors which affect the stray light in the proposed
system. Compared to the standard TS configurations, the
distance between the wall and the measurement point is
short (e.g. 1.5 m at the minimum) and it is not easy to dis-
tinguish the TS signal and the stray light generated at the
wall in time domain (see waveforms in Refs. [12, 13]). In
contract, the backward scattering scheme and a relatively
high edge temperature (e.g. ∼ 1 keV), makes it easier to
eliminate the stray light in wavelength domain. The col-
lected photon number from each laser chord is then given
as

Ntotal = Np ±
√

N p + Nback ±
√

Nback, (18)

where Np represents Thomson scattering photon num-
ber, and Nback represents plasma background radiation, for
which we assume bremsstrahlung emission.

√
Np or back

represents the associated Poisson noise (i.e., shot noise),
which is expected to be the dominant noise [12]. Fig-
ure 8 (a) shows the R−profile of detected photon num-
ber of the Thomson scattering and related Poisson noise
(∝

√
Np) component. Thomson scattering photon number

Np is given as

Np = 0.5N tσTS

∫ zmax(R)

zmin(R)

1
4π

O(Z)ne(Z,R)dZ, (19)

Nt =
λlaserElaser

2πℏc
, (20)

O(Z) = Ω(Z) × T × η, (21)

Nt represents injected photon number in one single laser
pulse, σTS = 7 × 10−29 m2 is Thomson scattering cross
section, ℏ is reduced plank constant, c is light speed. We
assume a laser with the following parameters: λlaser =

1064 nm is the laser wavelength, Elaser = 5 J is the laser
energy, ∆t = 10 ns is the pulse width. These parameters are
reasonable according to Ref. [14]. O(Z) represents overall
sensitivity of the collection optics and other components,
such as fiber, and polychromator and detector. Ω(Z) is the
solid angle profile along the laser path, and major radius
R dependence of Ω can be neglected, T = 0.8 is trans-
missivity of fiber, η = 0.6 is a typical quantum efficiency
of an avalanche photo diode [15], factor of 0.5 indicates
the fact that only shorter wavelength part of the scattered
wavelength spectrum is measured.

In this research the main component of the plasma
radiation is assumed to be the electron bremsstrahlung,

Fig. 8 (a) Comparison of photon numbers of line density of
Thomson scattering and Poisson noise. (b) Comparison
of photon numbers of line density of Thomson scattering
and bremsstrahlung.

whose detected photon number can be approximated as

Nback = A f

∫
1

4π
O(Z)

dN
dνdΩ

dνdZ, (22)

dP
dνdΩ

= n2
eZ2

e f f

(
e2

4πε0

)3
32π2

3
√

3m2
ec3

(
2m
πT

) 1
2

× exp

(
−2πℏν

T

)
, (23)

g =

√
3
π

K0

(
2πℏν
2T

)
× exp

(
2πℏν
2T

)
, (24)

dN
dvdΩ

=
dP

dvdΩ
1

2πℏν
× ∆t, (25)

where A f (= π × (17mm)2) is fiber image cross section
in midplane for the magnification of Zp/Z f , me is electron
mass, Ze f f = 1.5 is effective charge in pedestal region, ne,
Te are plasma density in m−3 and temperature in eV, ν is
frequency of collected photons. Density and temperature
profiles used in Fig. 8 (b) are assumed be the same as the
target profiles shown in Fig. 2 (ne0 = 9 × 1019 m−3, Te0 =

8 keV).
Figure 8 (b) shows the comparison of detected photons

number between Thomson scattering and bremsstrahlung.
The latter is negligible and is not considered in the follow-
ing processes. Note that the bremsstrahlung is proportional
to the square of density, and its effect becomes smaller for
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a lower density.

4. Reconstruction Method and Noise
Performance
Now we will estimate the reconstruction error due to

the Poisson noise of Thomson scattering light. We do not
evaluate the systematic error arising from the difference
between the continuous profiles and discretized profiles,
because such systematic error can be corrected by an iter-
ative analysis procedure.

The discrete form of Eq. (19) for k-th line density mea-
surement is

Np(k) = 0.5N tσTS

∑2k−1

j=1

1
4π

O( j, k)ne( j)∆Z( j, k),

(26)

in which k represents index of radial layer. k = 1 indi-
cates outermost layer, and k = kmax indicates innermost
layer. j represents index of intersected radial layer along
laser path, ∆Z( j, k) represents length of intersected radial
layer. Figure 9 (a) shows three possible laser paths within
pedestal region, magnetic surfaces are given by Eqs. (3)
and (4). Along single laser path, each radial layer is in-
tersected by laser twice except for innermost layer. When

Fig. 9 (a) Cross section of laser path. (b) Path length ∆Z( j, k)
profile under different radial layer. Each dot corresponds
to j in Eq. (26), ∆Z for the LIDAR maximum spatial res-
olution is also shown in red dash line.

we adopt a single chord vertical LIDAR system, ∆Z( j, k)
is the length of scattering volume along Z direction to re-
solve the signal at each layer. Length of intersected layer of
each path ∆Z( j, k) is shown in Fig. 9 (b), ∆Z for the LIDAR
maximum spatial resolution is ∼ 70 mm which is shown in
red dash line in Fig. 9 (b). With LIDAR system only radial
profile with R ≥ 10.85 m can be resolved by a single chord.
From Fig. 9 it is clear that a single chord LIDAR system is
not sufficient to resolve the whole pedestal structure, but a
multiple chord LIDAR may be an optional method.

Equation (26) can be further simplified by observing
that ne( j) profile along laser path is symmetry to innermost
layer. Redefining solid angle O( j, k) and length of inter-
sected layer ∆Z( j, k) as following

O′( j, k)=

{
O( j, k)+O(2k− j, k), j=1, 2, . . . , k−1

O( j, k), j=k
,

(27)

∆Z′( j, k)=

{
∆Z( j, k)+∆Z(2k− j, k), j=1, . . . , k−1

∆Z( j, k), j=k
.

(28)

Then Eq. (26) becomes

Np(k)=0.5N tσTS

∑k

j=1

1
4π

O′( j, k)ne( j)∆Z′( j, k),

(29)

Equation (29) can be rewritten as,

Np(k) =
∑k

j=1
Lk jne( j), (30)

where Lk j is k j−element of the matrix L. Then the den-
sity profile ne( j) can be obtained by using an appropriate
inverse matrix l as

ne( j) =
∑ j

k=1
l jkNp(k). (31)

The noise of reconstructed density profile due to line den-
sity Poisson noise is given by

⟨∆ne( j)2⟩ =
∑ j

k=1
l2jk⟨∆Np(k)2⟩. (32)

Here, we use the error propagation formula with the
fact that Poisson noise at different lines are independent.
⟨∆Np(k)2⟩ = Np(k) is the variance of Poisson noise,
Eq. (32) indicates that for a given layer all the noises at
outer lines contribute to the density noise at the layer. In
this study, we did not consider the effect of error in the
magnetic flux surface shapes, which is necessary to cal-
culate l jk in Eq. (32). Since it is difficult to estimate the
error presently, we would like to leave it as a future task.
For temperature measurement, we assume that line inte-
grated signal at each k-th radial layer is split into multiple
wavelength channels to measure the distribution function.
To simplify the discussion, two channels are assumed,
Np(k) = Np(k, λ < λ0) + Np(k, λ > λ0), λ0 represents split-
ting wavelength position, Np(k, λ < λ0) represents high
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Fig. 10 Reconstructed profile of (a) density, (b) temperature and (c) pressure, and reconstructed noise level of (d) density, (e) temperature
and (f) pressure. In (a), (b), (c), red curves represent target ne, Te, Pe profiles, dark blue curves represent reconstructed profile
with noise ne ± ∆ne, Te ± ∆Te and Pe ± ∆Pe. In (d), (e), (f), blue curves represent reconstructed noise profile with noise level
1.5%, orange curves represent reconstructed noise profile with noise level 3%.

velocity component, Np(k, λ > λ0) represents low velocity
component. The two lines integrated signals of two chan-
nels will be inverted by Eq. (31) to get ne( j, λ < λ0) ≡ nh

and ne( j, λ > λ0) ≡ nl separately. Then temperature profile
can be approximated as following

Te( j) = C( j) × nh

nl
, (33)

λ0 is chosen to get the ratio ⟨Np(k, λ < λ0)⟩/⟨Np(k, λ >

λ0)⟩ = 0.23, by which we obtain a nearly best performance
in terms of the noise. The relative error of reconstructed
temperature profile is given by

⟨∆Te
2⟩

⟨T 2
e ⟩
=

⟨
∆

(
nh

nl

)2
⟩

( ⟨nh⟩
⟨nl⟩

)2
=

[
⟨∆nl

2⟩
⟨nl⟩2

+
⟨∆nh

2⟩
⟨nh⟩2

]

=

[
1
⟨nl⟩
+

1
⟨nh⟩

]
, (34)

in which ⟨∆nl,h
2⟩ is the variance of low and high velocity

components Poisson noise. ⟨nl,h⟩ represents the mean of
low and high velocity components.

Figures 10 (a), 10 (b) and 10 (c) show the recon-
structed profile at a low shoulder density (5 × 1015 m−3)

condition to emphasize Poisson noise effect. Red curve
represents target ne, Te and Pe profile, blue curves repre-
sent reconstructed profile with noise level ne±∆ne, Te±∆Te

and Pe ± ∆Pe. The small structures developed around
pedestal boundary (red dash line in Fig. 10) is due to the
difference in required spatial resolutions in the both sides
of boundary which reflects the noise enhancement in re-
construction process (see Eq. (32)). In pedestal region
there are more measurement chords which make spatial
resolution higher compared to outer region which has less
measurement chords. Note that the degree of enhancement
increases with the number of chords used in reconstruc-
tion process. Figures 10 (d), 10 (e) and 10 (f) show rela-
tive noise levels in R − ne0 space, where ne0 is the shoul-
der density (at R = 10.69 m). Within the density range of
interest 1019 ∼ 1020 m−3 in JA DEMO, the error of the
reconstructed profile is within 3% in both density, tem-
perature, and pressure profile. Beside the above described
noise accumulation, the relative error decreases with R in
the region R < 10.8 m and increases with R in the region
R > 10.8 m. Since the density is nearly flat in the first
region, the same noise accumulation causes a higher er-
ror for an inner position. In the outer region, however,
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the noise accumulation is not serious because the outer re-
gion always has lower density. The error in this region is
dominated by Poisson noise and the relative error tends to
increase with R because of the decreasing density profile.
The noise performance of this line integrated measurement
satisfies the present criterions of pedestal measurement in
ITER, in which noise level of density and temperature pro-
file are 5%, 10% separately for scientific research.

One of practical drawbacks of this scheme is that we
need either 20 lasers or vibrating (i.e. tilting) mirror to
measure 20 chords.

5. Conclusions
In order to control or avoid ELMs in a fusion reac-

tor, an accurate measurement of pedestal pressure profile is
needed. In a reactor, however, the first (collection) mirror
should be located far from the plasma to avoid damage on
it. Thus, a standard Thomson scattering are believed to be
difficult due to the small solid angle of the mirror. We pro-
posed a line-integrated Thomson scattering measurement
to achieve a high accuracy by utilizing a long scattering
length, while the first (collection) mirror is located behind
the tube with length 10 m and radius 0.2 m. Due to the long
scattering distance the sensitivity is about 1×10−3 m·sr, and
this is about 2 orders of magnitude larger than those for a
conventional Thomson scattering. Due to the profile re-
construction from line integrated measurements, the error

increases, but the resultant error of the reconstructed den-
sity, temperature and pressure are at most 1.5%, 3%, 3%
separately in pedestal region. The present work demon-
strated that a line integrated backward Thomson scattering
is feasible and attractive in a fusion reactor.
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