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A method is presented for controlling the trajectory of a vertically injected charged spherical laser fusion
target. The position and time of the injected target in flight are measured in a position measurement unit using the
Arago spot. After the target passes between the first pair of deflection plates, where there exists a constant electric
field, the mass-to-charge ratio of the target in flight is obtained from the shift in its trajectory. The amplitude of
the electric field applied between the second and third pairs of deflection plates is calculated using this ratio. After
passing through the second and third pairs of deflection plates, the target deflects its trajectory to pass through
the reactor center. The design parameters of the trajectory control system for a tabletop plasma device and a laser
fusion reactor are presented.
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1. Introduction
In direct-drive laser fusion, a spherical fuel target is

injected into the reactor chamber, where laser fusion oc-
curs. The position and time of the injected target in flight
are measured. However, the trajectory must be calculated
within a few milliseconds to predict the arrival position and
time of the target at the reactor center. The focal points of
hundreds of laser beams must be moved to the arrival posi-
tion. The engagement error in the laser beam and the target
at the main implosion shot must be lower than 20 µm [1].

To avoid or reduce the difficulty in controlling hun-
dreds of final optical components, several methods to con-
trol the target trajectory have been proposed instead of con-
trolling the final optical component, e.g., the magnetic con-
trol method [2,3] and the electrostatic control method [4,5].
The above methods adjust the trajectory of the target to pass
through the reactor center onto which hundreds of laser
beams are focused.

In the magnetic control method, the spherical target
is coated with a Pb layer and cooled below 7.2 K. The
target is injected through symmetrically placed magnets.
The cooled target becomes superconducting state and is
subjected to the repulsion force from the magnets. The
target deflects its trajectory and hits the reactor center. To
cool Pb from 17 K down to 7.2 K, a low vibration system
and a thermal shield are required as the specific heat of Pb
at 7 K is around one order of magnitude less than that at
17 K [6].

The electrostatic control method uses an electric field
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to achieve the continuous dynamic control of the trajec-
tory of a charged target. The direct-drive spherical target
is coated with a very thin metal layer to reflect the radia-
tion from the hot chamber wall [7]. The spherical target
is considered as a spherical conductor. The target is in
touch with the high-voltage injector and is launched. In the
pioneering study of Petzoldt et al., the target was charged,
and an electric field was applied to adjust the trajectory of
the target [4, 5]. The authors used a parallel laser beam
to continuously illuminate the freely falling target. The
two-dimensional (2D) Arago (Poisson) spot image was pro-
cessed every 8 ms to measure the x- and y-coordinates of
the charged target [4]. However, in the case of a 100-m/s
injection, the processing time of the 2D Arago spot image is
too long. Parallel laser illumination to the target reduces the
spatial resolution to measure the target position at a large
distance. In addition, continuous illumination reduces the
time resolution. Thus, numerous improvements can still be
made to the existing setup. Precise measurements of the
position and time of the charged target enable the precise
control of the target trajectory using an electric field.

In this study, a simple and precise control method of
the target trajectory is proposed using an electric field. Or-
thogonal pulsed divergent laser illumination is used on the
flying charged target to measure precisely its position and
time [8]. The mass-to-charge ratio of the target in flight is
first measured. Although the charging voltage at the tar-
get release is constant, the charge on the target changes at
every injection [4]. Furthermore, it is difficult to measure
the mass and charge of the target in flight. However, the
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precise measurement of the position and time of the flying
target in an electric field provides a precise mass-to-charge
ratio without knowing neither the mass nor the charge of
the target. This ratio is the most important parameter in
the calculation of the target trajectory in an electric field.
After determining this ratio, the magnitude of the electric
field required to force the target to pass through the reactor
center can be calculated. This control electric field is ap-
plied between the deflection plates before the target passes
through them. The target adjusts its path accordingly and
hits the reactor center.

The trajectory control system is presented in Sec. 2,
and the measurement method for the mass-to-charge ra-
tio is described in Sec. 3. The procedure to calculate the
magnitude of the control electric field required to adjust
the trajectory is presented in Sec. 4. Recently, a vertical
target injection and engagement system were built and op-
erated at 1 Hz [9–12]. The design parameters of the trajec-
tory control system for two potential applications, namely a
high-repetition plasma generation device and a laser fusion
reactor, are provided in Sec. 5. Finally, the conclusions are
drawn in Sec. 6.

2. Trajectory Control System
The trajectory control system is illustrated in Fig. 1.

The charged spherical target flies in vacuum from the top
and enters the reactor chamber when the shutter opens.

The XYZ-coordinate system is introduced both in the
global coordinate system and in the local coordinate system
in the position measurement unit (PMU). The origin of the
global coordinate system is set to be the reactor center,
i.e., the fixed focus of the implosion laser. The origin of
the local XYZ-coordinate system is marked with a cross
at the center of each PMUi (i = 1, 2, 3) and corresponds
to (0, 0, Hi) in the global XYZ-coordinate system. In our
previous study [13], the placement error in the PMU was
experimentally evaluated through one test injection. After
calibrating the placement error, the local coordinates and
time of the injected target in the PMU can be transformed
into global coordinates, i.e., the measured local coordinates
of the target (dxi, dyi, dzi, Ti) in the PMUi are converted
into global coordinates (dxi, dyi, Hi + dzi, Ti). A first pair
of parallel electrodes (A) is set between the PMU2 and the
PMU3 to measure the mass-to-charge ratio. A second pair
of parallel electrodes (B) is placed between the PMU3 and
the chamber wall to generate a constant electric field Ex ,
which deflects the trajectory of the injected charged target.
A third pair of parallel electrodes (C) is used to generate
a constant electric field Ey , which also deflects the target
trajectory.

In this study, the distance d between the deflection
plates is assumed to be ∼0.02 m, i.e., much smaller than
the plate length L (d ≪ L). Thus, for simplicity of discus-
sion, the electric field is assumed to exist only between the
deflection plates. The spherical charged target is treated as

Fig. 1 Trajectory control system. The pairs of electrodes A and
B are parallel to the YZ-plane. The pair of electrodes C
is parallel to the XZ-plane. HAU, HBU, and HCU are the
upper heights of the electrodes A, B, and C, respectively,
whereas HAL, HBL, and HCL are the corresponding lower
heights.

a point charge. The acceleration and deceleration of the
charged target in the fringe field of the plate are neglected.

The charged target is injected from the top. When
the target is detected in the PMUi (solid box) in Fig. 1,
it is automatically irradiated by orthogonal pulsed laser
beams at the points P1, P2, and P3 at times T1, T2, and T3,
respectively, as represented by the black points in Fig. 1.
The timings of the laser illumination for the target position
measurement in each PMU are shown in Fig. 2.

The target crosses two parallel Rays, namely Ray1 and
Ray2, and the times at which the voltage of the photodiode
decreases, namely TRay1 and TRay2, are detected [9, 11, 12].
The distance between Ray1 and Ray2 is ∆L ≈ 0.01 m. As
a time difference is ∆T = TRay2 − TRay1, the target is then
located a distance ∆L below Ray2, which corresponds to
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Fig. 2 Schematic of the interior of the PMU. PD denotes the
photodiode. The target crosses Ray1 and Ray2 at times
TRay1 and TRay2, respectively. ∆L is the distance between
Ray1 and Ray2.

Table 1 Local and global coordinates.

the position measurement region at TRay2 + ∆T . The target
is irradiated by orthogonal pulsed laser beams.

The precise target position in the PMU is obtained us-
ing the Arago spot method. The Arago spot is a tiny bright
spot that appears at the central portion of the geometrical
shadow of the spherical target. A divergent beam illumina-
tion magnifies the shadow, enabling remote measurements
without reducing the spatial resolution [8]. The target with
a velocity of 100 m/s moves by 1 µm in 10 ns. Irradiating
the spherical target with an orthogonal pulsed laser with a
duration of less than 10 ns permits the measurement of the
position and time of the injected target with an accuracy
of less than 1 µm for a 100-m/s injection. Image compres-
sion using a cylindrical lens can convert the 2D Arago spot
image into a one-dimensional image [14]. This technique
reduces the amount of data and enables real-time data pro-
cessing for trajectory control.

The time variable can be considered as a global vari-
able by supplying common clock pulses to each PMU. The
local and global coordinates of the points are presented in
Table 1.

The target deflects its trajectory due to the E0 electric
field between the A plates and reaches the point P3 at time
T3. The point P”3 represented in red in Fig. 1 is the cal-
culated target position at time T3 in the case of no applied
electric field. The mass-to-charge ratio of the target can be
derived from the difference between the coordinates of the
points P3 and P”3. After passing through the second and
third pairs of deflection plates, the target passes through a
temporally opened shutter and moves along the trajectory
that passes through the reactor center (0, 0, 0). The time

Fig. 3 Time sequence of the target motion. The thick red seg-
ments represent accelerated motion, whereas the thin
black segments represent motion with a constant velocity.

sequence of the target motion is illustrated in Fig. 3.

3. Measurement of the Mass-to-
Charge Ratio
The position and velocity of the injected target in the

PMU1 are assumed to be (dx1, dy1, H1 + dz1) and (vx1,
vy1, vz1) at T1 = 0, respectively. These values are used
to determine the mass-to-charge ratio. The local position
(dx1, dy1, dz1) is measured by the PMU1. The velocity of
the target at T1 = 0 is obtained from the PMU1 and PMU2
data as follows.

The equation of motion for the x-direction is described
as:

m
dvx
dt
= 0, (1)

where m is the mass of the target. The x-component of the
velocity and the position of the target are:

vx(t) = vx1, (2)
x(t) = vx1t + dx1, (3)

where vx1 is the x-component of the target velocity at t =
0 (i.e., at time T1). A similar equation holds for the y-
direction. Since the displacement along the x-direction,
namely Lx2 = x(T2) − x(0), and that along the y-direction,
namely Ly2 = y(T2) − y(0), are proportional to the flight
time T2, one obtains:

Lx2 = dx2 − dx1 = vx1T2, (4)
Ly2 = dy2 − dy1 = vy1T2. (5)

Thus, the velocity at t = 0 can be determined as follows:

vx1 =
dx2 − dx1

T2
, (6)

vy1 =
dy2 − dy1

T2
. (7)

The equation of motion for the z-direction is as follows:

m
dvz
dt
= −mg, (8)

where g is the gravitational acceleration. The z-component
of the velocity and the position of the target are:

vz(t) = −gt + vz1, (9)

z(t) = −g
2

t2 + vz1t + (H1 + dz1), (10)
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where vz1 is the z-component of the target velocity at t =
0. The displacement along the z-direction, namely Lz2 =

z(T2) − z(0) is as follows:

Lz2 = (H2 + dz2) − (H1 + dz1) = −g
2

T2
2 + vz1T2.

(11)

The z-component of the velocity at t = 0 (vz1) is as follows:

vz1 = (Lz2 +
g

2
T2

2 )
1
T2
. (12)

In the absence of an electric field, the target position
at time T3 is given by:

x ′′(T3) = dx ′′
3 = dx1 + vx1T3, (13)

y(T3) = dy3 = dy1 + vy1T3, (14)

z(T3) = H3 + dz3 = −g
2

T2
3 + vz1T3 + (H1 + dz1).

(15)

The x-coordinate of the red point P”3 is obtained using
Eq. (13). In reality, an electric field with magnitude E0
exists between the first pair of deflection plates (A).

The equation of motion, velocity, and position of the
charged target in the constant electric field E0 for the x-
direction are:

m
dvx
dt
= qE0, (16)

vx(t) =
q
m

E0t + C1, (17)

x(t) = q
2m

E0t2 + C1t + C2, (18)

where q is the charge of the target. The integration constants
C1 and C2 are determined from the initial conditions. The
position depends on the mass-to-charge ratio.

The times TAin and TAout, at which the target enters and
exits the region with constant electric field, respectively,
are obtained according to:

z(TAin) = −g
2

T2
Ain + vz1TAin + (H1 + dz1) = HAU,

(19)

z(TAout) = −g
2

T2
Aout + vz1TAout + (H1 + dz1) = HAL,

(20)

where HAU and HAL are the upper and lower heights of the
A electrodes from the XY-plane (z = 0). The duration of
the constant acceleration of the target is represented by:

∆TA = TAout − TAin. (21)

After the target exits the acceleration region, it moves
again with constant velocity till t = T3. The positions of

Table 2 Position and velocity of the target in the x-direction from
time T1 = 0 to time T3.

the target at times T1, TAin, TAout, and T3 are given by:

x(T1) = x(0) = dx1, (22)
x(TAin) = dx1 + vx1TAin, (23)

x(TAout) = dx1 + vx1TAin + vx1∆TA +
q

2m
E0∆T2

A

= dx1 + vx1TAout +
q

2m
E0∆T2

A, (24)

x(T3) = dx1 + vx1TAout +
q

2m
E0∆T2

A

+
(
vx1 +

q
m

E0∆TA

)
(T3 − TAout)

= dx1 + vx1T3

+
q
m

[
∆T2

A
2
+ ∆TA(T3 − TAout)

]
E0

= dx3. (25)

The x-coordinate of the black point P3 is represented using
Eq. (25). The x-components of the position and velocity at
times T1, TAin, TAout, and T3 are summarized in Table 2.

The difference between x(T3) and x”(T3) is as follows:

x(T3) − x ′′(T3) = dx3 − dx ′′
3

=
q
m

[
∆T2

A
2
+ ∆TA(T3 − TAout)

]
E0.

(26)

This difference is proportional to the electric field E0. To
observe this difference, a sufficiently strong electric field
E0 must be applied. The measurement value dx3 = x(T3) is
obtained experimentally from the PMU3. The theoretical
value dx”3 = x”(T3) is calculated from the PMU1 and
PMU2 data. The mass-to-charge ratio R can be obtained
from Eq. (26) according to:

R =
m
q
=

[
∆T 2

A
2 + ∆TA(T3 − TAout)

]
E0

dx3 − dx ′′
3

. (27)

The mass-to-charge ratio of the charged target in flight can
then be determined from the PMU1, PMU2, and PMU3
data.
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4. Control Electric Field
In this section, the control electric field is determined.

At time T3, the target has the initial global position (dx3,
dy3, H3 + dz3) and the initial velocity (vx3, vy3, vz3). These
values are used to determine the control electric fields Ex

and Ey . This position and velocity are related to the PMUi

(i = 1, 2, 3) data and the mass-to-charge ratio.

x(T3) = dx3 = dx1 + vx1TAout +
q

2m
E0∆T2

A

+
[
vx1 +

q
m

E0∆TA

]
(T3 − TAout),

(25)
y(T3) = dy3 = dy1 + vy1T3, (14)

z(T3) = H3 + dz3 = −g
2

T2
3 + vz1T3 + (H1 + dz1),

(15)

vx(T3) = vx3 = vx1 +
q
m

E0∆TA, (28)

vy(T3) = vy3 = vy1, (29)
vz(T3) = vz3 = vz1 − gT3. (30)

The target arrival time T4, which corresponds the time at
which target passes through the reactor center in the XY -
plane (z = 0), is obtained according to:

z(T4) = −g
2

T2
4 + vz1T4 + (H1 + dz1) = 0. (31)

Times TBin and TBout are obtained according to:

z(TBin) = −g
2

T2
Bin + vz1TBin + (H1 + dz1) = HBU,

(32)

z(TBout) = −g
2

T2
Bout + vz1TBout + (H1 + dz1) = HBL,

(33)

where HBU and HBL are the upper and lower heights of
the B electrodes, respectively. The duration of the constant
acceleration in the x-direction is as follows:

∆TB = TBout − TBin. (34)

The positions of the target at times T3, TBin, and TBout
are

x(T3) = dx3, (35)
x(TBin) = dx3 + vx3(TBin − T3), (36)

x(TBout)=dx3+vx3(TBin−T3)+vx3∆TB+
q

2m
Ex∆T2

B

=dx3 + vx3(TBout − T3) +
q

2m
Ex∆T2

B. (37)

To calculate the control electric field Ex , x(T4) is set to

zero. Thus, one obtains:

x(T4) = dx3 + vx3(TBout − T3) +
q

2m
Ex∆T2

B

+ (vx3 +
q
m

Ex∆TB)(T4 − TBout)

= dx3 + vx3(T4 − T3) +
q

2m
Ex∆T2

B

+
q
m

Ex∆TB(T4 − TBout)

= dx3 + vx3(T4 − T3)

+
q
m

[
∆T2

B
2
+ ∆TB(T4 − TBout)

]
Ex

= dx3 + vx3(T4 − T3)

+
1
R

[
∆T2

B
2
+ ∆TB(T4 − TBout)

]
Ex

= 0. (38)

The x-components of the position and velocity at times T3,
TBin, TBout, and T4 are summarized in Table 3.

The electric field Ex is obtained from Eq. (38) as fol-
lows:

Ex =
−dx3 − vx3(T4 − T3)[
∆T 2

B
2 + ∆TB(T4 − TBout)

] · R

=
−dx3 − vx3(T4 − T3)

dx3 − dx ′′3

·

[
∆T 2

A
2 + ∆TA(T3 − TAout)

]
[
∆T 2

B
2 + ∆TB(T4 − TBout)

] · E0

=
−dx3 − (vx1 +

q
mE0∆TA)(T4 − T3)

dx3 − dx ′′
3

·

[
∆T 2

A
2 + ∆TA(T3 − TAout)

]
[
∆T 2

B
2 + ∆TB(T4 − TBout)

] · E0. (39)

A similar analysis holds for the y-direction. The y-
components of the position and velocity of the target are
summarized in Table 4.

In the y-direction, times TCin and TCout are obtained
according to:

Table 3 Position and velocity of the target in the x-direction from
time T3 to time T4.
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Table 4 Position and velocity of the target in the y-direction from
time T3 to time T4.

z(TCin) = −g
2

T2
Cin + vz1TCin + (H1 + dz1) = HCU,

(40)

z(TCout) = −g
2

T2
Cout + vz1TCout + (H1 + dz1) = HCL,

(41)

where HCU and HCL are the upper and lower heights of
the C electrodes, respectively. The duration of the constant
acceleration in the y-direction is as follows:

∆TC = TCout − TCin. (42)

Thus, using a similar argument, one obtains:

Ey =
−dy3 − vy3(T4 − T3)[
∆T 2

C
2 + ∆TC(T4 − TCout)

] · R. (43)

The control electric fields Ex and Ey for the charged target
in flight are determined from the PMU1, PMU2, and PMU3
data. The voltage V between the plates can be obtained by
multiplying the electric field E by the separation distance
d between the plates, i.e., V = Ed. In order to generate
the potential difference between the plates, the DC power
supply does not require a large current but only a high-
speed switching response and an accurate voltage control,
as shown in Sec. 5.

5. Numerical Examples
Two numerical examples are provided as model ap-

plications of the proposed trajectory control system. In
this section, the gravitational acceleration g and permittiv-
ity ε0 are assumed to be 9.8 m/s2 and 8.854 × 10−12 F/m,
respectively.

5.1 Design parameters for a tabletop plasma
device

The development of a repetitive target injection, track-
ing, and laser engagement system is crucial for the realiza-
tion of laser fusion power plants. Experimental repeatabil-
ity enhances the reliability of a system. A repetitive target
shot is also important to acquire reliable plasma atomic
data. Many different types of atoms are used in the laser

Table 5 Time sequence of the target injection at vz1 = −3 m/s.

fusion target, which is illuminated by lasers with numerous
shot parameters. The proposed trajectory control system
can be applied both to the repetitive neutron generation
experiment and to the future repetitive plasma generation
experiment.

Previous demonstration experiments of the target in-
jection, laser engagement, and neutron generation at 1 Hz
were conducted using a HAMA laser [9, 11, 12]. In these
works, the authors did not use an electric field trajectory
control system but rather a freely falling target and con-
sidered a 0.2-m vertical flight path. Considering a typical
laboratory room, a vertical flight path of 2 m was selected
in the present work. Three pairs of plates, namely the test
plates A, control plates B, and control plates C, were set
along the path. Furthermore, the PMU1 and PMU2 were
set at a sufficient distance between each other for target tra-
jectory determination. There should also be a sufficiently
large distance between the last pair of plates and the fixed
focus of the implosion laser, i.e., the origin of the global co-
ordinate system. The values of the heights of the PMUs and
the plates are listed in Table 5. The accuracy of the mea-
surement of the target position was assumed to be 1 µm [8].
The values of the mass m, charge q, and injection speed
vz1 of the injected target were chosen based on two factors:
(i) easiness of the measurement of the trajectory deflec-
tion over 500 µm and (ii) simplicity of the trajectory con-
trol. Since our model can measure the trajectory deflection
with an accuracy of 1 µm, the relative error in the mass-to-
charge ratio R is smaller than 0.004 (= 2/500) according
to Eq. (27). As the trajectory deflection is proportional to
the electric field E0, then the relative error decreases with
increasing E0.

An Fe (density of 7.87 g/cm3) solid target with a ra-
dius r = 0.5 mm was chosen. The mass of the target
was 4.1207 mg, which is on the same order of the high-
gain laser fusion target mass (4.6553 mg) [7]. In addition,
steel ball bearings of the same size were used for the tra-
jectory control system. Mori et al. pushed the spherical
shell target with a needle and obtained an initial velocity of
0.19 m/s [10]. If the needle is charged at 1 kV, the surface
voltage of the target V0 also becomes 1 kV. The charge of
the target is obtained according to:
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q
4πε0r

= 1000. (44)

Thus, the target charge is as follows:

q = 4πε0r × V0 = 5.5631 × 10−11. (45)

The mass-to-charge ratio m/q is 7.4072 × 104 kg/C. Al-
though this is an idealized value, the mass-to-charge ra-
tio for each injection is distributed around this value.
The electric field between the A test plates is set to be
E0 = 2 × 104 V/m. The target position at t = 0 is assumed
to be (0,0,2). As the target is composed of solid Fe, it is
not destroyed by the needle impact. The target velocity is
assumed to be (0,0.01,−3) for the high-repetition experi-
ment. The other parameters and time sequence are listed in
Table 5.

In reality, the position of the target can be determined
with an accuracy of 1 µm, but the height of the deflection
plates has an error ∆L (∼0.1 mm) due to machining and in-
stallation. As this error results in errors in TAin, TAout, ∆TA,
and so on, also the mass-to-charge ratio R and the control
electric fields Ex and Ey have an error. The relative error in
the plate length is estimated to be 0.0005 (0.1 mm/200 mm),
and ∆TA has a relative error of ∼0.001. Since the velocity
of the target is less than 10 m/s, we assume a time resolution
of 10−7 s at T2 and T3 to predict the position of the target at
T4 with an accuracy of 1 µm.

The distance from PMU2 to PMU1 (PMU3) is ∼0.35 m
(∼0.45 m), whereas the distance from the fixed focus of the
implosion laser to the bottom of the C plates is ∼0.35 m.
The interaction between the target and the electric field has a
duration of 50 ms for all pairs of plates. The displacement
of the target due to the electric field E0 at the PMU3 is
675 µm. The control electric fields, namely Ex between
the B plates and Ey between the C plates, are calculated
using Eqs. (39) and (43), respectively. They are −3.313 ×
104 and −7.709 × 104 V/m, respectively. If the allowable
position error at time T4 is required to be 20 µm, then the
allowable relative errors in Ex and Ey are 0.006 and 0.005,
respectively. Ex must be applied within 25 ms (= TBin −T3)
after the target position is monitored at T3.

If the surface voltage of the target is set to 0.5 (=
1/2) kV, the x-displacement of the target at PMU3 is 338
(= 675/2) µm. Ex and Ey are −3.313 × 104 V/m and
−1.542 × 105 V/m, respectively. As the target charge is
halved, the magnitude of the electric field Ey must double.

The lengths of the A, B, and C plates are ∼0.22, ∼0.27
and ∼0.31 m, respectively. The distance between the B and
A (C) plates is∼0.25 m (∼0.15 m). As the injection velocity
is 3 m/s, an injection of N Hz corresponds to a distance of
at least 3/N m between the targets. If this distance is larger
than the plate length, it then becomes possible to inject the
target with N Hz. These considerations indicate that this
control system can be operated at 9 Hz.

Since the impulse J on the target is calculated as the
integral of the force F over the time interval t during which

it acts, the velocity change caused by the Ey control plates
is written as follows:

d(vy) =
1
m

Fydt =
( q

m

)
Eydt �

(
4πε0r V0

m

)
Ey

L
vz
,

(46)

where L is the length of the plate. If the Ey control plates
are set at the midpoint of the vertical path and the target
has a y-component of the initial velocity vy1 , 0, then the
change in vy at the midpoint required for the target to hit
the fixed focus of the implosion laser is as follows:

d(vy) = −2vy1 �
4πε0r V0L

mvz
Ey . (47)

The value of Ey must be smaller than the maximum electric
field Eymax that the apparatus can generate. Considering
Eq. (47), one obtains:

2∆vymax ∼
����4πε0r V0L

mvz
Eymax

���� , (48)

where∆vymax is the tolerance of the initial y-component ve-
locity at the target injection, i.e., −∆vymax < vy1 < ∆vymax.
The inequality in Eq. (48) provides a limited range for
the design parameters. If we assume Eymax = 2 kV/cm,
L = 0.2 m and vz = 5 m/s, the right-hand side of Eq. (48)
then becomes:����5.563132 × 10−11 × 0.2 × 2 × 105

4.1207 × 10−6 × 5

���� ≈ 0.1, (49)

and the value of ∆vymax is 0.05 m/s. Since Eq. (48) holds
for a simple one-stage control system, a similar inequality
holds for a multistage control system, i.e.:

2∆vymax ∼
����4πε0r V0

mvz

∑
i
LiEyimax

���� , (50)

where Li and Eyimax are the length and the maximum elec-
tric field of the i-th plates, respectively.

The proposed control system has only three pairs of
deflection plates, namely A, B, and C. Auxiliary control
plates B’ and C’ may be set to adjust the trajectory more
precisely with additional PMUs.

5.2 Design parameters for a laser fusion
reactor

As the surface temperature of a laser fusion reactor
chamber exceeds 900 K, the injection velocity of the target
is greater than 100 m/s to retain the solid hydrogen layer at
the implosion shot against the infrared radiation. Consid-
ering Eq. (48), when the target velocity vz is increased to
100 m/s, the charging voltage V0, plate length L, and max-
imum electric field Emax must be increased accordingly
to extend the tolerance of the initial velocity components,
namely ∆vxmax and ∆vymax. The target is in contact with a
metal support, to which a voltage of 2 kV is applied. Thus,
the surface voltage of the target is assumed to be V0 = 2 kV
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at the moment of target injection. The mass and radius of
the target are assumed to be 4 mg and 2 mm, respectively.
The charge of the target is obtained according to:

q
4πε0r

= 2000. (51)

Thus, the target charge is as follows:

q = 4πε0r × V0 = 4.4505 × 10−10. (52)

The mass-to-charge ratio m/q is calculated to be 8.9877 ×
103 kg/C. The electric field between the A test plates is set
to E0 = 1×105 V/m. The position and velocity of the target
at t = 0 are assumed to be (0,0,13) and (0.1,0.1,−100),
respectively. The other parameters and the time sequence
are listed in Table 6. Since the velocity of the target is
∼100 m/s, we assume a time resolution of 10−8 s at T2 and
T3 to predict the position of the target at T4 with an accuracy
of 1 µm.

The distance from the PMU2 to the PMU1 (PMU3) is
1.5 m (2.0 m), whereas the distance from the reactor center
to the bottom of the C plates is 5.5 m. The interaction
between the target and the electric field has a duration of
∼15 ms for all pairs of plates. The displacements of the
target in the x- and y-directions at the PMU3 are 5154 (=
3494+1660) and 3494 µm, respectively. The displacement
of the target due to the electric field E0 is 1660 µm. The
control electric fields, namely Ex between the B plates and
Ey between the C plates, are calculated using Eqs. (39) and
(43), respectively. They are −2.228 × 105 and −1.259 ×
105 V/m in the case of E0 = 1 × 105 V/m, respectively. If
the allowable position error at time T4 is required to be
20 µm, then the allowable relative errors in Ex and Ey are
0.0006 and 0.0015, respectively.

The direction and strength of the electric field E0
between the A test plates are important for reducing the
strength of the electric field Ex between the B test plates.
If the electric field between the A test plates is set to
E0 = −1 × 105 V/m, the displacement of the target at the
PMU3 is 1834 (= 3494 − 1660) µm. The control electric
fields Ex and Ey are −3.262 × 104 and −1.259 × 105 V/m
in the case of E0 = −1 × 105 V/m, respectively. If the al-
lowable position error at time T4 is required to be 20 µm,

Table 6 Time sequence of the target injection at vz1 = −100 m/s.

then the allowable relative errors in Ex and Ey are 0.004
and 0.0015, respectively. This result indicates that whether
1×105 V/m or −1×105 V/m can be adequately determined
after monitoring the PMU1 and PMU2 so as to decrease
the absolute value of Ex for fine control. Moreover, the
value of the mass-to-charge ratio is roughly known before
the injection; thus, after obtaining the data from the PMU1
and PMU2, the adequate value of E0 for measuring the
mass-to-charge ratio can be determined so as to decrease
|Ex. |.

The control electric field Ex must be applied within
5 ms (= TBin − T3) after the target position is monitored at
T3. The electric field is created between pairs of deflection
plates. We consider the charging time of the deflection
plates. We assume that plates have a width w = 0.02 m, a
length L = 1.5 m, and a separation distance d = 0.02 m.
The parallel plates can be considered to be a capacitor. The
capacitance of the deflection plates is 1.328 × 10−11 F.

We assume that each plate has an electric wire con-
nected in series with a resistor R = 10 kΩ to reduce the
electric current. The RC time constant τ is the product
of the circuit resistance R and the circuit capacitance C,
i.e., τ = 1.328 × 10−7 s. One of deflection plates is con-
nected to ground (V = 0), whereas the other is assumed
to be connected to a high-voltage terminal V = Vhigh at
t = 0. The potential difference between the plates is
V(t) = Vhigh × (1 − e−t/RC). At t = 9.296 × 10−7 s (= 7τ),
the potential difference becomes Vhigh × (1 − 0.9 × 10−4) =
0.9991Vhigh. The charging time of the deflection plates re-
quired to generate the control electric field with a relative
error of 10−3 is shorter than 1 µs. This charging time is
much shorter than 5 ms (= TBin − T3).

Improvements to the injection accuracy of the target
can also reduce |Ex | and |Ey. |. Equation (48) indicates that
if the tolerance of the initial y-component velocity ∆vymax
decreases, then the required Eymax also decreases.

The region above the shutter (z > 5 m) is assumed to
be in vacuum. In a typical reactor using liquid metal, the re-
gion below the shutter (z < 5 m) is a gas environment. The
case whereby the target is injected into the reactor chamber
filled with a residual gas is considered. This residual gas
acts as a frictional force on the target motion and causes a
delay in the arrival time of the target. The arrival time of
the vertically injected target is calculated according to the
z-component of the data of the target position. Since the
frictional force on the target is proportional to the target
velocity and |vz1 | (> 100 m/s) is much greater than |vx1 |
(< 0.1 m/s) and |vy1 | (< 0.1 m/s), the x- and y-components
of the target velocity in the reactor chamber can be assumed
to be constant. Norimatsu et al. estimated that the delay is
1.26× 10−2 m in a laser fusion reactor, where the target in-
jection velocity is 200 m/s and the flight distance is 5 m in a
0.05-torr Pb vapor environment [15]. The delay time is thus
6.3 × 10−5 s. The delay of the target causes an error in the
target position in the XZ-plane, as shown in Fig. 4 (a). The
timing correction represents a simple adjustment method.
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Fig. 4 (a) Before correction. (b) After correction. The solid
arrows show the actual trajectory, whereas the dashed
arrows show the calculated trajectory without the residual
gas effect. dz is the delay of the target caused by the gas
resistance.

The timing of the implosion laser shot is adjusted in
practice by monitoring the delay of the target in the gas-
filled reactor chamber. To monitor the delay of the target,
an optical target position measurement is required in the
reactor [13, 14]. If the target delay dz can be treated as a
constant value in the steady operational reactor, the arrival
time T4 will then become T4 + (dz/|vz |). If the control
electric fields Ex and Ey are calculated using this value,
the position error is then eliminated. This procedure means
that the injection system aims at (0,0,−dz), as shown in
Fig. 4 (b). If the target position is (X0,Y0, dz) at time T4
instead of (0, 0, 0) due to the constant horizontal gas flow,
a similar correction (i.e., the injection system aims at (−X0,
−Y0, −dz)) must then be adopted.

Strictly speaking, the target path is divided into two
regions: the outside and inside of the reactor, i.e., vacuum
and the gas environment. Depending on the region, the
target motion must be analyzed using either the equation
of motion in vacuum or the equation of motion in the gas
environment [13].

As the control electric field Ex is determined by
Eq. (39), the target position at T4 is x(T4) = 0. Without the
control electric field Ex , the x-component of the position at
time T4 is x(T4) = dx3+vx3(T4−T3). The position displace-
ment required by Ex is [−dx3 − vx3(T4 −T3)]. The position
displacement is proportional to the value of Ex . If Ex be-
comes Ex× (1+ δ), then x(T4) = [−dx3 − vx3(T4 −T3)] × δ.
This means that the error in the control electric field causes
an error in the position of the target at time T4. If the re-
quired position displacement is 5000 µm and the allowable
position error at time T4 is 20 µm, then δ must be smaller
than 0.004.

Another error may originate from the quantization of
the applied voltage in the control system. We consider
that the potential difference between the deflection plates
is given by the voltage drop of finite resistors. If there
are wires and M resistors with resistances R, 2R, 22R
23R, . . . ,2M−1R, then we can construct a new resistor RA
with resistance N ×R (0 < N < 2M −1, where N is an inte-
ger) by connecting the wires and several resistors in series.

We can construct another new resistor RB with resistance
(2M − 1− N) × R by connecting all the remaining resistors
and wires in series.

Here, we add one more resistor with resistance R. M+1
resistors can be used to construct a new resistor RA with
resistance N × R (0 < N < 2M , where N is an integer)
and a new resistor RB with resistance (2M − N) × R. The
series resistance of RA and RB is 2M × R. We assume
that the DC power supply has two terminals, V = 0 and
V = Vmax. The RA and RB resistors are assumed to be
connected to both terminals. The electric current is given
by I = Vmax/(2M R), and the voltage drops of the resistor
RA and RB are Vmax × (N/2M ) and Vmax × (2M − N)/2M ,
respectively.

The voltage applied between the deflection plates is
generated by bringing each deflection plate into contact
with both ends of the resistor RA. The quantized voltage
interval, i.e., the quantization error in the voltage, is written
as Vmax/2M . Since the maximum position displacement of
the target in this control system drmax is proportional to
Emax and Emax is proportional to Vmax (= Emaxd, where d is
the plate separation distance), the quantization error in the
voltage Vmax/2M then results in a quantization error in the
target position drmax/2M . This value must be smaller than
20 µm, which is the allowable position error at time T4:

drmax

2M
< 2 × 10−5. (53)

One way to satisfy Eq. (53) is to increase M . From Table 6,
we consider the case in which the tolerance of the initial y-
component velocity at the target injection∆vymax is 0.1 m/s.
If there is no electric field in this control system, then y(T4)
is 0.013 m, and we obtain drmax = 0.013 m. We need at
least 11 resistors (M = 10) to satisfy Eq. (53). Another
way to satisfy Eq. (53) is to decrease drmax. If ∆vymax is
halved, then the quantization error in the target position is
also halved.

After the determination of the control electric fields Ex

and Ey , the potential differences Vx between the B plates
and Vy between the C plates are calculated. The values
of Vx and Vy are normalized by Vmax and converted to
two binary numbers. Using these binary numbers, resis-
tor selection and circuit construction are realized through
switching. The switching time of the relay is a few millisec-
onds, but the switching time of the FET is usually shorter
than 1 µs. The FET switching time is much shorter than
5 ms (= TBin − T3).

The flight distance of the target from the injection point
to the shutter of the reactor is large. A multistage trajectory
control system is then considered. The purpose of the first
stage is to estimate roughly the m/q value of the target and
adjust roughly the target trajectory over a short distance.
The purpose of the second stage is to estimate precisely the
m/q value and adjust precisely the target trajectory over a
long distance. The second stage is easily combined with
the first stage. The maximum control electric field of the
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second stage Emax2 can be reduced compared with that of
the first stage Emax1. As indicated by Eq. (53), a reduction
in the maximum control electric field leads to a reduction
in the quantization error in the control trajectory and to a
fine control.

6. Conclusion
A method to control the trajectory of a vertically in-

jected charged spherical target was presented. The charged
target passes between the test deflection plates. The mass-
to-charge ratio of the target was calculated via simple alge-
braic arithmetic using the local coordinates and time data
of the target in the PMU. The magnitude of the applied
electric field required to adjust the trajectory of the injected
target in order for it to reach the reactor center was cal-
culated using the mass-to-charge ratio as well as the local
coordinates and time data of the target. Numerical ex-
amples for the control of the injected target in a tabletop
high-repetition plasma experimental device and in a laser
fusion reactor were provided. A simple criterion for choos-
ing the design parameters of the trajectory control system
was obtained.
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Appendix A. Effect of the Fringe Field
of the Parallel Deflection Plate
The electric field is assumed to exist only between the

deflection plates. In order to validate this assumption, we
introduce a conformal mapping and two coordinate sys-
tems, namely the ω-plane and z-plane coordinate systems,
that have no connection with the XYZ-coordinate system.
We consider the electric field between two infinite parallel
plates set at v = +π(−π) and charged ψ = +V(−V). In this
case, the plates have an infinite width along the direction
perpendicular to the ω-plane. Our problem can thus be
treated in two dimensions, as shown in Fig. A1 [16–20].

In Fig. A1 (a), the equipotential lines are represented
by horizontal solid lines of the form v = C1, and the electric
field lines are represented by vertical dashed lines of the
form u = C2. As shown in Fig. A1 (b), the electric field
between two semi-infinite (x < −1) parallel plates can
be calculated via conformal mapping in two dimensions
[16,17, 20]:

z = x + iy = ω + exp(ω) = u + iv + exp(u + iv).
(A.1)

Both positive (u > 0, dashed segment) and negative (u < 0,
solid segment) parts of the v = +π(−π) line in Fig. A1 (a)
are mapped on the segment y = +π(−π) for x < −1 in
Fig. A1 (b). This mapping takes the strip (−π < v < π)
into the entire z-plane. Considering the real and imaginary

Fig. A1 (a) Two infinite parallel plates and theω-plane: the hori-
zontal solid line shows an equipotential line at v = mπ/4
(m = −3 ∼ 3, integer), whereas the vertical dashed line
shows the electric field line at u = nπ/8 (n = −4 ∼ 4,
integer). (b) Two semi-infinite parallel plates and the
z-plane.

parts, it is possible to write:

x = u + exp(u) cos(v), (A.2)
y = v + exp(u) sin(v). (A.3)

The equipotential lines and the electric field lines between
two infinite parallel plates in the ω-plane are also mapped
into the equipotential lines and the electric field lines be-
tween two semi-infinite parallel plates in the z-plane, re-
spectively.

The electric field in the z-plane is expressed as follows:

Ex(x(u, v), y(u, v)) =
V
π
· eu sin v

1 + 2eu cos v + e2u ,

(A.4)

Ey(x(u, v), y(u, v)) = −V
π
· 1 + eu cos v

1 + 2eu cos v + e2u .

(A.5)

Examples of coordinate mappings are presented in Ta-
ble A1.

The fringe field decreases rapidly with the distance
from the boundary of the plate. The distance from the
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Table A1 (x(u, v), y(u, v)) coordinates in the z-plane.

Fig. A2 (a) The dashed line represents the target path between
two parallel electrodes placed at y = ±π. (b) Elec-
tric field Ey as a function of the x-component of the
target path (x, y(x)). The dashed curve represents Ey

on the target path. The thick solid line represents a
rectangular function. The thin solid line represents an
equivalent rectangular function including the effect of
the fringe field. (c) Electric field Ex as a function of the
x-component of the target path.

(0,0) point to the (8,0) point in the ω-plane is 1.27 times
larger than the spacing between the plates (2π). The cor-
responding distance from the (1,0) point to the (8 + e8,0)
point in the z-plane is 2987.96, which is 476 times larger
than 2π.

We consider the case in which the target is moved
through the electrodes of length L and their separation
distance 2π at a constant velocity (Vx0, Vy0), as shown
in Fig. A2 (a). The electric field leaks at both boundaries
(x = 0 and x = L). The electric fields Ex and Ey that
the target is subjected to are represented by a solid line in
Fig. A2 (c) and a dashed line in Fig. A2 (b) as a function of
the x-coordinate of the target position, respectively.

Since the impulse Jy is the integral of the force Fy ,
the integral of the smooth function of the dashed curve in
Fig. A2 (b) can be approximated by the integral of the thin
solid rectangular function to maintain the integral value
constant.

Jy =
∫ TB

TA

Fy(t)dt =
∫ TB

TA

qEy(x(t), y(x(t)))dt,

(A.6)

where Fy is the y-component of the force that acts on the
target, and TA and TB are the times at which the target passes
x(TA) = A and x(TB) = B, respectively. Equation (A.6) can
be transformed into:

q
Vx0

∫ L/2

A

Ey(x, y(x))dx +
q

Vx0

∫ B

L/2
Ey(x, y(x))dx

=
q

Vx0

(
−V
π

)
×
( [
ε(0) + L

2

]
+

[
L
2
+ ε(L)

] )
.

(A.7)

Here, the values ε(0) and ε(L) can be considered as
the effective length of the plate extension. Assuming the
electric field Ey is a constant −V /π in the interval [0, L],
the value of ε(0) depends on the y-component of the point
(0, y(0)) and the interval [A, 0].

Since the x-coordinate of the plate right edge is −1 in
Fig. A1 (b), the effective length ε(L) can be approximated
by solving the following equation:∫ −1+D

−1
Ey(x, y(x))dx = −V

π
ε, (A.8)

where D is the length of the integral interval. The function
y(x), i.e., the target path, slowly changes with x. We assume
that the target passes through the central region |y(x)| <
π/2. The integral is characterized by the position of the
target at y(−1) and the integral interval. From Eq. (A.5),
one can then obtain:

ε =∫ −1+D

−1

1 + eu(x,y(x)) cos v(x, y(x))
1+2eu(x,y(x)) cos v(x, y(x))+e2u(x,y(x)) dx.

(A.9)

If we consider the effective length of the plate exten-
sion, times TAin and TAout must be calculated according to
Eqs. (19) and (20) using the corrected height of the plate,
i.e., corrected H ′′

AU and H ′′
AL.

We consider the case in which the target is moved from
the boundary x = −1, i.e., from the point S to the point R
shown in Fig. A3 (a). The integral of field (Ex , iEy) along
the closed PQRSP path in the z-plane is zero according
to the Cauchy integral theorem. The integral of the field
(0,−iV/π) along the corresponding P’Q’R’S’P’ path in the
ω-plane is also zero.

Since the target motion is bounded near the x-axis,
the potential difference between the points Q and R can be
neglected in the case of a long flight path. This means that
the integral along the QR and Q’R’ paths can be neglected
in the case of a long flight path. In this case, the integral
along the SR(S’R’) path is the sum of the integral along
the SP(S’P’) path and the integral along PQ(P’Q’) path.
The integral along the SP(S’P’) path represents mainly the
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Fig. A3 (a) The segment SR is the target path in the z-plane.
The points P and Q are the projections of the points
S and R, respectively. The thick solid line represents
the electrode y = ±π (x < −1). (b) The curve S’R’
is the corresponding target path in the ω-plane. The
points P’, Q’, R’, and S’ correspond to the points P, Q,
R, and S, respectively. The thick solid line represents
the electrode y = ±π.

potential energy difference and slows or accelerates the
target motion, which depends on the y-component of the
point S(S’). We can approximate the integral along the
SR(S’R’) path with the integral along the PQ(P’Q’) path.

Considering that the target moves on the x-axis (y = 0)
with a flight distance D = 2989 from the right boundary
(x = −1), then v = 0, and the effective length can be
bounded as

ε ∼
∫ −1+D

−1

1 + eu(x,0) cos v(x,0)
1 + 2eu(x,0) cos v(x,0) + e2u(x,0) dx

=

∫ 2988

−1

1 + eu(x)

1 + 2eu(x) + e2u(x) dx

=

∫ 8

−1.278

1 + eu

1 + 2eu + e2u · dx
du

du

=

∫ 8

−1.278
dx < 3π. (A.10)

The effective length ε is not more than 1.5 times the plate
separation distance d.

In practice, as the plate width w is finite and assumed
to be w = d = 0.02 m, the electric field from the edge of the
plate diverges in three dimensions and thus decreases more
rapidly. If the deflection plates are set in an electrostatic
shield with holes, the electric field can be confined within
the shield, as shown in Fig. A4. This results in a decrease in
the integral interval D along the x-direction and a decrease
in the effective length ε.

Fig. A4 Electrodes in the electrostatic shield with holes.

The meaning of the effective length ε is that the length
of the control plate L can be considered to be effectively
L+ε. As the value of the effective length ε is on the order of
the plate separation distance d, the duration of the constant
acceleration, i.e., ∆TA, ∆TB, and ∆TC, has a relative error
in d/L. These errors cause an error in the position of
the target at the reactor center. This position error will be
compensated in two ways: (1) by installing auxiliary control
plates B’ and C’ to adjust the trajectory more precisely with
additional PMUs and (2) using an experimentally obtained
correction factor for the control electric field.
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