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Ion mass dependence of the resistive drift wave instability is investigated to understand wave number spectra
in magnetized cylindrical plasmas. Modes with larger axial mode numbers are linearly unstable in the case of
smaller mass ions as helium. Analytical expression is obtained, which shows that not only the azimuthal mode
number but also the axial mode number has the preferable one depending on the mass number. Therefore, 3-D
observation of the spatial structure is important to capture the variation including this parameter.
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Variation of ion species in discharges affects perfor-
mance of plasma confinement. Isotope effect is still the
unresolved mystery in magnetic confinement fusion plas-
mas [1], and several kinds of impurities with larger mass
numbers come into core plasmas [2]. Basic experimental
devices with cylindrical configuration are used to investi-
gate fundamental mechanism of plasma turbulence, such
as formation mechanism of turbulence structures [3] and
nonlinear interaction between plasma instabilities [4]. Ef-
fects of ion species have been also studied in the basic plas-
mas [5]. In simulations, variations of characteristic mode
numbers and formed structures in plasma turbulence are
predicted between different discharge gases [6]. This arti-
cle represents the analytical expression of the resistive drift
wave instabilities for the linear devices. There are prefer-
able azimuthal and axial mode numbers corresponding to
the ion mass number for this instability induced by density
gradient.

Nonlinear simulations for PANTA linear device [7] us-
ing turbulence code NLD [8] have shown that a large num-
ber of modes with larger axial mode numbers become un-
stable in the case of smaller mass ions, and their nonlin-
ear couplings gives difference in formed turbulent struc-
tures [6]. Figure 1 shows comparison of turbulent states in
argon and helium plasmas. For the calculation of resistive
drift wave instability in cylindrical plasmas with homoge-
neous magnetic fields in the axial direction, the following
set of three-field reduced fluid equations is used [8];

dN
dt
= −∇//V − V∇//N + μN∇2

⊥N + S , (1)

d∇2⊥φ
dt
= ∇N ·

(
−νin∇⊥φ − d∇⊥φ

dt

)
− νin∇2⊥φ

−∇//V − V∇//N + μW∇4⊥φ
, (2)
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Fig. 1 Numerical simulations of potential perturbations in the
saturated states of plasma turbulence in cylindrical plas-
mas. Comparison between argon and helium discharges
are shown.

dV
dt
=

M
me

(∇//φ−∇//N)−(νei+νen)V+μV∇2
⊥V, (3)

where N is the density, φ is the electrostatic potential, V
is the electron velocity in the magnetic field direction, S is
the particle source, ν is the collision frequency, and μ is the
viscosity. The time and distance are normalized by the ion
cyclotron frequency Ωci and the effective Larmor radius
ρs =

√
MTe/eB evaluated by using the electron temper-

ature Te, respectively. Neutral particles exist even in the
center of this rather low temperature plasma, so the effect
of neutrals is included by the νin terms. In addition, only
charge number Z = +1 ions are considered with this range
of the temperature.

Linearization with

∂/∂t → −iωt, ∂/∂r → ikr,

(1/r)∂/∂θ → ikθ,∇⊥ → ik⊥,∇// → ikz

and simplification with φ0 = ∂φ0/∂r = V0 = ∂V0/∂r = 0
give the following set of equations;
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−ω−iμNk2⊥ ω∗ kz

0 T (ω+iνin)+iμWk4⊥ kz

Mikz −Mikz −ω−iνe−iμVk2⊥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
N
φ

V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (4)

where ω∗ = kθL−1
n is the diamagnetic frequency, Mi =

Amu/me is the ion mass ratio, A is the ion mass number,
mu is the atomic mass constant, L−1

n = −dN0/dr is inverse
of the density gradient length and T = k2⊥ + ikrL−1

n . De-
pendence of the linear growthrate is obtained as in Fig. 2
by solving Eqs. (4) numerically. The simulation param-
eters are the followings; magnetic field B = 0.1 T, elec-
tron temperature Te = 3 eV, plasma radius a = 7 cm,
device axial length λ = 4 m, electron-ion collision fre-
quency νei/Ωci = 300, electron-neutral collision frequency
νen/Ωci = 10, viscosities μW = μV = 10−4, μN = 10−2 and
Ln = a/5. There are several (m, n) modes, which have pos-
itive growthrates (unstable modes) with a certain νin and
A, and among them the mode with a maximum growthrate
is picked up, which has mode number (mp, np). Here, m
and n are azimuthal and axial mode numbers, respectively.
Larger νin makes modes stable, and heavier ion makes mp

and np smaller. (mp, np) = (15, 11) mode is the most unsta-
ble with helium plasma, though (3, 1) mode is with argon
plasma, when νin = 0.04.

An analytical expression for the linear growthrate is
presented here to explain the mode number dependence
with different ion species. In the drift wave range with
ω � νe, Eqs. (4) gives an eigen-equation

ω2 +

[
iνin + iP

T + 1
T

]
ω − P

(
νin +

iω∗
T

)
= 0, (5)

where P = Mik2
z /νe is related to axial wave number kz.

Here viscosities are put to be zero μW = μV = μN = 0 for
simplicity. The solution of Eq. (5) is

Fig. 2 (a) Dependence of the maximum linear growthrate on ion
mass number A and collision frequency νin. The dashed
line shows the unstable boundary where the growthrate is
zero. The maxima are given with different (b) azimuthal
mp and (c) axial np, depending on the parameters.

ω=

−iνin − iP
T + 1

T
±

√
−ν2in + 2P

(
T − 1

T
νin + 2i

ω∗
T

)
− P2

(
T + 1

T

)2

2
.

(6)

In these parameters, νin and P have the same order of mag-
nitude, so the expression is little bit complex. Figure 3
shows dependence of the imaginary part Im ω on kz. The
curves have the maxima at kz ∼ 0.02 with any νin smaller
than 0.05. To evaluate the most unstable kz, an analytical
expression with νin � P � 1 is obtained as

ω ∼ −iP
T + 1

2T
+

√
iP
ω∗
T
. (7)

Solution (7) has the maximum growthrate

Imω =
1
4

kθL−1
n

1 + k2⊥
, when P =

1
2

k2⊥
(1 + k2⊥)2

kθL
−1
n . (8)

Then, k2
θ = 1 + k2

r with fixed kr gives the maximum of
Eq. (8) to be

Imω =
1
8

L−1
n

(1 + k2
r )3/2
, when P =

1
8

1 + 2k2
r

(1 + k2
r )3/2

L−1
n .

(9)

For the radial direction, smaller kr makes the mode unsta-
ble (kr → 0), and the value is determined by the boundary
condition, when the global mode structure is considered.
From these expression, dependence of a spectrum peak on
the ion mass number A is given to be

mp ∝ A−1/2 from kθ ∼ 1 (10)

and

np ∝ A−3/4 from
Mik2

z

νe
∼ 1

8
L−1

n , (11)

considering the normalization with ρs. In this way, prefer-
able kθ and kz are obtained, which makes the plasma most

Fig. 3 Dependence of the linear growthrate on kz with νin = 0 −
0.05. This is the case with A = 4, kr = π/(a/ρs), kθ =
12/(a/ρs).
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unstable. Perpendicular and parallel flow balance and de-
lay of the response by collision is the cause of the resis-
tive drift wave instability. In the balance, competition of
the convective derivative term and the perpendicular drift
(especially polarization drift) term in Eq. (2) is the key to
determine the wave number spectrum.

In this research, the ion mass dependence of the resis-
tive drift wave instability was investigated. The variation is
related to change of Larmor radius, which gives the typical
special length here. Not only kθ but also kz has the most
unstable one depending on the mass number, which indi-
cates 3-D features are important for understanding plasma
turbulence. This is the result from the local linear anal-
ysis, but actual turbulent states must be determined with
nonlinear processes. Global calculations including nonlin-
ear relaxation of the background profile will be compared
with experiments.
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