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In a three-phase matrix converter based on space-vector modulation (SVM), nine switches are controlled so
that the instantaneous space vector of the line-to-line voltage rotates smoothly in two-dimensional space. The
quaternion is a four-dimensional hypercomplex number that is good at describing three-dimensional rotation,
such as that seen in three-dimensional game graphics programming theory. Utilizing the quaternion capability,
we analyze a matrix converter by three-dimensional rotation instead of transforming to two-dimensional rotation
in alpha-beta coordinates. It was clarified that the projection of the quaternion locus in three-dimensional space
in the (1,1,1) direction is the same as an alpha-beta transformation locus in two-dimensional space. Concerning
the direct matrix converter, we clarified that the (1,1,1)-directional superposition of three-fold higher harmonics
cannot be eliminated. The quaternion can rotate and divide a three-dimensional vector. When the output voltage
quaternion is divided by input one, the switching quaternion is obtained. The quaternion characteristics will be
utilized to analyze a matrix converter based on direct SVM in more detail.
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1. Introduction
A matrix converter can produce an output voltage

waveform of arbitrary frequency and phase angle, and can
be utilized as a power supply for a resonant magnetic per-
turbation (RMP) coil. The converter can produce an in-
put current waveform of an arbitrary phase angle and en-
able unity input power factor, which makes a fusion reactor
more efficient.

In the three-phase indirect matrix converter, a volt-
age source inverter and voltage source regulator were com-
bined and their individual technology was utilized [1]. In
the three-phase direct matrix converter based on space-
vector modulation (SVM), nine switches are controlled so
that an instantaneous space vector of the line-to-line volt-
age rotates smoothly in two-dimensional space [2].

The quaternion, a four-dimensional hypercomplex
number, is good at describing three-dimensional rotation
and has been utilized in three-dimensional game graphics
programming theory. Utilizing the quaternion capability,
we analyze a matrix converter by three-dimensional rota-
tion instead of transforming to two-dimensional rotation in
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alpha-beta coordinates.
It was clarified that the projection of the quaternion

locus in three-dimensional space in the (1,1,1) direction
is the same as the alpha-beta transformation locus in two-
dimensional space. Concerning the direct matrix converter,
we clarified the (1,1,1)-directional superposition of three-
fold higher harmonics, which is necessary for improve-
ment of the voltage transformation ratio.

The quaternion can rotate and divide a three-
dimensional vector. When an output voltage quaternion is
divided by input one, the switching quaternion is obtained.
Quaternion characteristics will be utilized to analyze a ma-
trix converter based on direct SVM in more detail.

2. Space Vector and Quaternion
Let us consider the transformation from a star-

connection three-phase electromotive force (phase voltage)
to a line-to-line voltage:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (1)

Since this transformation matrix is a cyclic matrix, the
eigenvalues are 1 − 1, 1 − exp( j2π/3), and 1 − exp( j4π/3).
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Therefore, we can consider a complex transformation
wherein the matrix is composed of the eigenvectors. We
can define αβ0 transformation by considering the real part:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(2)

Therefore, we can consider that the three-phase voltage
vector is transformed to the orthogonal coordinates shown
in Fig. 1. We can define the space vector by considering
the projection to the x-y plane (two-dimensional complex
plane).

To represent three-phase AC in three dimensions, we
introduce the quaternion (a four-dimensional hypercom-
plex number), which is extended from a two-dimensional
complex number [3]:

q = a + v = a + (ivx + jvy + kvz), (3)

i2 = j2 = k2 = −1, (4)

i j = − ji = k, (5)

jk = −k j = i, (6)

ki = −ik = j. (7)

The quaternion is divided into real part (scalar part) a and
imaginary part (vector part) v, similar to a two-dimensional
complex number. Namely, the vector part has properties of
a vector, where imaginary numbers i, j, and k behave as if
they are unit base vectors, but they also have properties of
a hypercomplex number. The square of imaginary num-
bers i, j, and k are equal to −1. The product of different
imaginary numbers is the other imaginary number, the sign
depends on the order, and commutative law does not hold.
To assign three-phase AC to the vector part, we consider
the exponential representation of the quaternion:

q = a + n̂‖v‖ = ‖q‖(cos θ + n̂ sin θ) = ‖q‖ε n̂θ, (8)

n̂ = (ivx + jvy + kvz)/‖v‖, (9)

‖v‖2 = (vx)2 + (vy)2 + (vz)
2, (10)

‖q‖2 = a2 + ‖v‖2. (11)

The quaternion can manipulate four dimensions, as it
is interpreted as a four-dimensional number. But if we let

Fig. 1 Orthogonal coordinate system of αβ0 element method.

the scalar part be equal to zero, we can consider the left-
hand-side product of the exponential hypercomplex num-
ber (‖q‖ = 1, n̂ = k) and a vector on the x-y plane. Namely,
when the exponential number is multiplied to the vector
part from the left-hand side, the vector part rotates by θ
in the counter-clockwise direction with an axis of the unit
vector n̂. Here, the rotating axis must be perpendicular to
the vector. When the vector has a component parallel to
n̂, the vector rotates on the (1, n̂) plane and the scalar part
appears.

We can assign three-phase AC phase (line-to-neutral)
voltages to the vector part of the quaternion:

e =
√

2E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+i cos(ωt − 0π/3)
+ j cos(ωt − 2π/3)
+k cos(ωt − 4π/3)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = ε
n̂ωt
√

3Ee0,

(12)

n̂ = (+i + j + k)/
√

3, (13)

e0 = (+i1 − j1/2 − k1/2)/
√

3/2. (14)

Namely, the vector part of the quaternion represents the
initial three-phase (positive sequence) AC voltage vector√

3Ee0, which rotates in the counter-clockwise direction
with an axis of unit vector n̂. In this case, the locus of the
rotating vector is a circle on the plane, which is perpendic-
ular to n̂ and includes the origin. While we look at the x-y
plane from the z-axis in the case of a space vector (Fig. 1),
we look at the (1,1,1) plane from the (1,1,1) direction in
the case of the quaternion (after-mentioned Fig. 5).

3. Realization of the Switching Matrix
A three-phase to three-phase matrix converter (Fig. 2)

is discussed, when the switching frequency is much higher
than the modulation frequency.

Usually, in a vector equation with coefficient matrix
A, we can solve the equation Ax = y by obtaining the in-
verse matrix A−1. But in complex number equations, we
can calculate the transformation C = v/u by dividing the
number v by the number u.

Similarly, in the switching equation for a matrix con-

Fig. 2 Direct-type matrix converter. The input voltage source
is shown at the top and the output load is shown at the
right, so that the switching configuration corresponds to
the switching matrix element.
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verter, we can express the three-phase input and output
voltages using the quaternion:

exp(+n̂ωot)
√

3Eoe0 = Q exp(+n̂ωit)
√

3Eie0. (15)

In this case, the switching quaternion Q is calculated as
follows:

Q = exp(+n̂ωot)(Eo/Ei) exp(−n̂ωit)

= r exp{+n̂(ωo − ωi)t}. (16)

Here, r is the voltage transfer ratio. The above quater-
nion equation is re-expressed by the vector equation with a
switching matrix [4, 5]:

exp(+n̂ωot)
√

3Eoe0

= r exp{+n̂(ωo − ωi)t} exp(+n̂ωit)
√

3Eie0, (17)
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cos(ωit − 0π/3)
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (18)

ωm = ωo − ωi. (19)

For all components to be larger than 0 and smaller than 1,
we have only to multiply by 1/2 and add 1/2. However, the
summation of three elements in each row is not constant
and may not be made unity by any means as far as we
consider the phase voltage.

By considering the line-to-line voltage, we can deduce
the original Venturini method [6]:
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Concerning the improved Venturini method, third higher
harmonics of the desired output phase voltage and input

phase voltage can be added, since the harmonics constitute
zero space about the transformation from phase voltage to
line-to-line voltage.

4. Analysis of Direct Matrix
Converter
The three-phase to three-phase direct matrix converter

based on SVM is discussed in Ref. [2]. There are 27 kinds
of switching configurations, since any output phase must
not be opened in case of an inductive load, such as a mo-
tor. Input phases a, b, and c are expressed as phases 1, 2,
and 3, respectively, for considering the switching configu-
ration mathematically. A switching matrix is defined as a
matrix, which is composed of S i j. To study its character-
istics, we define a configuration (column) vector, which is
composed of column number j such as S i j = 1, and define
a configuration matrix, composed of the configuration (col-
umn) vectors. In the case of Fig. 2, the switching matrix is
such a matrix that S i j = 0, except for S 11 = 1, S 22 = 1,
and S 32 = 1: the configuration vector is (1, 2, 2)T where
the superscript T denotes the transpose. By connecting
the closed switches, we can express the switching ma-
trix with a bent line (+1) in Fig. 3. Similarly, switching
matrices (+2) and (+3) of the first group are expressed
in Fig. 3 and the configuration vectors are (2, 3, 3)T and
(3, 1, 1)T , respectively. The switching matrix of the first
group of the three switching configurations is singular-
value-decomposed as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 3
2 3 1
2 3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.54 +0.84 0
−0.59 −0.38 −1/

√
2

−0, 59 −0.38 +1/
√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
6.2 0 0
0 2.0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.37 −0.65 −0.67
+0.46 +0.50 −0.74
−0.81 −0.58 +0.12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (21)

Since the left-singular vector corresponding to the singular
value 0 is perpendicular to the base vector (phase A), the
switching produces the base vector (phase A). Among the
three switching configurations, the input current of phase
1 (phase a) is controlled by 122 and 311 (named as +1 and
+3) switching configurations. Similarly, the second base
vector is produced by 221 and 113 (named as +7 and +9)
switching configurations. The output voltage space vector
is composed of the four switching configurations as their

Fig. 3 Switching configurations in the direct matrix converter.
The first positive group is composed of (+1), (+2), and
(+3). The first negative group is composed of (−1), (−2),
and (−3).
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Fig. 4 Symmetric switching sequence with zero switch-
ing (03,−3,+9, 01,−7,+1, 02) in the first sector and
(02,−8,+5, 03,−6,+9, 01) in the second sector in the di-
rect matrix converter.

Fig. 5 Output phase voltage quaternion in the direct matrix con-
verter. The output line voltage quaternion (a circle) is
also shown.

linear combination. The weight of the linear combination
(duty ratio) is determined from the four-series equations.

The duty ratio is determined by transferring the four
switching configurations as shown in Fig. 4. The red
line indicates a base vector of phase a, the green line
phase b, and the blue line phase c. In the case of an
asymmetric switching sequence, (−3,+9, 01,−7,+1) and
(+1,−7, 01,+9,−3) are repeated in the first sector. During
this switching in the first sector, the output phase A is al-
ways connected to input phase a and the other switch com-
mutates only one time between adjacent configurations.
Similarly, (−8,+5, 03,−6,+9) and (+9,−6, 03,+5,−8) are
repeated in the second sector. During this switching in the
second sector, the output phase C is always connected to
input phase c. In the case of an asymmetric switching
sequence, the switch must commutate twice between ad-
jacent sectors. In the case of a symmetric switching se-
quence, by adding zero switching (02), the switch only has
to commutate only once even between adjacent sectors, as
shown in Fig. 4.

The output phase voltage quaternion is shown in Fig. 5
in the case of symmetric switching with three 0 configu-
rations 01, 02, 03. The quaternion locus in the first sector
(left half of Fig. 4) is drawn by a red line and the second
sector (right half) by a green line. The quaternion locus is
continuous at the phase angle π/3 (the intersection point)
between the sectors. When only one 0 configuration 01 is
adopted, the output phase voltage quaternion is shown in

Fig. 6 Output phase voltage quaternion in the direct matrix con-
verter. The only one 0 switching configuration 01 is
adopted in asymmetric space vector modulation.

Fig. 6.
From Figs. 5 and 6, the output phase voltage quater-

nion seems to be located on the surface of a cylinder, which
is extracted from the input phase voltage quaternion locus
(a circle) in the (1,1,1) direction. The output line voltage
quaternion draws a circle and the locus is expressed by the
following equations:

vAB + vBC + vCA = 0, (22)

(vAB)2 + (vBC)2 + (vCA)2 = (Vo)2. (23)

From the transforming matrix, the locus of the output
phase voltage quaternion is expressed as follows:

(eA − eB)2 + (eB − eC)2 + (eC − eA)2 = (
√

3Eo)2.

(24)

Namely, the output phase voltage quaternion is located on
the surface of a cylinder, which is extracted from the input
phase voltage quaternion locus in the (1,1,1) direction.

5. Summary
Since a transformation matrix from three-phase AC

phase voltage to line voltage is a circulant matrix, the
three-phase AC phase voltage is decomposed into zero-
sequence, positive-sequence and negative-sequence volt-
ages. It was clarified that the projection of the quaternion
locus in three-dimensional space in the (1, 1, 1) direction is
the same as an αβ transformation locus in two-dimensional
space.

The quaternion can rotate and divide a three-
dimensional vector. When the output voltage quaternion
is divided by input one, the switching quaternion is ob-
tained. Though we could obtain a switching matrix, whose
element is larger than 0 and smaller than 1, we could not
obtain a switching matrix wherein the sum of its row ele-
ments is unity. By considering the line-to-line voltage, we
can deduce the original Venturini method.
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In the direct matrix converter, the output phase voltage
quaternion does not draw a circle, and the locus is located
on a cylindrical surface. This surface is obtained by ex-
tracting the input phase voltage quaternion locus (a circle)
in the (1,1,1) direction.
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