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Distribution of electric potential near the wall in the volume produced negative ion source with the magnetic
field increasing toward the wall such as the cusp magnetic field is investigated analytically. The plasma-sheath
equation that gives the electric potential in the plasma region and the sheath region near the wall is derived
analytically and the potential distribution near the wall is obtained by solving the plasma-sheath equation. Effects
of the degree of increase of the magnetic field, the production amount of volume produced negative ion, and the
ion temperature on the distributions of electric potential are shown.
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1. Introduction
A neutral beam injection (NBI) is one of the most

promising methods of heating plasma confined magneti-
cally in Tokamak. In a hydrogen negative ion source for
the NBI, plasma is confined by cusp magnetic field in or-
der to suppress plasma loss on a wall. However, some
plasma particles move along the magnetic field and are
lost on the wall. The amount of negative ions produced
in the ion source depends on the plasma density related to
the particle loss on the wall and the plasma temperature
related to the energy loss on the wall. It has been shown
that a width of plasma loss region of the electron energy
depends on a heat transmission coefficient that is the ratio
of the heat flux to the particle flux multiplied by the elec-
tron temperature along the magnetic field [1]. Since the
heat transmission coefficient is related to a sheath potential
formed near the wall in the plasma [2], investigating the
electric potential near the wall is important in the produc-
tion of negative ions in the ion source. Emmert et al. have
investigated formation of the electric potential considering
both the plasma and the sheath regions by using a plasma-
sheath equation [3]. Sato et al. have extended the method
of Emmert et al. to a case of magnetized plasma with the
magnetic field decreasing toward the wall such as the di-
vertor plasma [4]. However negative hydrogen ion (H−)
has not been considered in both studies.

In this paper, we will investigate the distributions of
the electric potential near the wall with the magnetic field
increasing toward the wall such as the cusp magnetic field,
where volume produced H− ion is considered in addition
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to electron and positive hydrogen ion (H+). The plasma-
sheath equation is derived analytically and the distribu-
tion of the electric potential is obtained. The effects of
the degree of increase of the magnetic field, the production
amount of volume produced H− ion, and the temperature
of H+ ion and volume produced H− ion on the distribution
of electric potential are shown.

2. Plasma-Sheath Equation
2.1 Model and basic equations

The analysis model is shown in Fig. 1. In the analysis,
walls on both sides are considered in order to maintain a
conservation of particles. The problem is treated as one-
dimensional model in z-direction. The electric potential
φ(z) and the magnetic field B(z) are assumed to be sym-
metric about z = 0 and B(z) is B0 at z = 0. Plasma is
assumed to consist of H+ ions, volume produced H− ions,
and electrons. It is also assumed that the magnetic field
is perpendicular to the wall near the wall and an effect of
the magnetic presheath is ignored. Total energies E of the
H+ ion and Ev of the volume produced H− ion in the z-
direction are

Fig. 1 Analysis model.
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where M and Mv are the ion masses, υ⊥, υv⊥ and υ//, υv//

are the velocities perpendicular and parallel to the mag-
netic field, q and −q are the charges of the H+ ion and
the H− ion, respectively. The subscript “v” denotes value
belonging to the volume produced H− ion throughout this
paper. The magnetic moments are given by

μ = (1/2)Mυ2
⊥/B(z), (3)

μv = (1/2)Mvυ
2
v⊥/B(z). (4)

The kinetic equations for the H+ ion and the H− ion in the
phase space (z, E, μ) and (z, Ev, μv) are described by

συ//(z, E, μ)
∂ f (z, E, μ, σ)

∂z
= S (z, E, μ), (5)

συv//(z, Ev, μv)
∂ fv(z, Ev, μv, σ)

∂z
= S v(z, Ev, μv),

(6)

where σ = ±1 is the direction of the particle motion, f (z,
E, μ, σ) and fv(z, Ev, μv, σ) are the distribution functions,
and S (z, E, μ) and S v(z, Ev, μv) are the source functions.
We assume a symmetry about z = 0 for the distribution
functions and the source functions. We also assume that
particles are not reflected at the wall, then the boundary
conditions of the distribution functions are f (−L, E, μ,
+1) = f (L, E, μ, −1) = fv(−L, Ev, μv, +1) = fv(L, Ev,
μv,−1) = 0.

2.2 Plasma-sheath equation
From Eqs. (1) - (4), the parallel velocities of the H+ ion

and the H− ion are given by υ// = [(2/M){E − μB(z) −
qφ(z)}]1/2 and υv// = [(2/Mv){Ev −μvB(z)+ qφ(z)}]1/2. The
energy space of the particle is divided to some regions,
which is based on the condition that υ// and υv// must be
real number, that is, E − μB(z) − qφ(z) ≥ 0 for the H+ ion
and Ev − μvB(z) + qφ(z) ≥ 0 for the H− ion. The particle
motion depends on its energy. The distribution functions
f (z, E, μ, σ) and fv(z, Ev, μv, σ) for σ = ±1 are obtained
by integrating Eqs. (5) and (6) for particle trajectory with
the boundary conditions. The energy spaces of the ions are
shown in Fig. 2 and Fig. 3, where zt, and zvt are the turning
points of the H+ ion and the H− ion, respectively. The sum
of the distribution functions about σ = ±1 for each energy
region for H+ ion becomes
(a) The case of energy space is upwards convex∑

σ

f (z, E, μ, σ)

=
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2
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S (z′, E, μ)
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(7a)

(a) upwards convex (b) downwards convex

Fig. 2 Energy space of the H+ ion.

Fig. 3 Energy space of the H− ion.

(b) The case of energy space is downwards convex∑
σ

f (z, E, μ, σ)

=
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and that for the H− ion becomes∑
σ

fv(z, Ev, μv, σ)

=
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S v
(
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)
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dz′v,

(Ev min < Ev < μvB(±L) − qφ(±L))

(8)

where Emin = μB(z) + qφ(z) and Evmin = μvB(z) − qφ(z),
and z′ and z′v are the generation positions of the H+ ion and
the H− ion. As the source functions, we use the expression
same as the Emmert et al. [3] and Sato et al. [4]

S (z, E, μ) = S 0h(z)
M2

4π(kTi)2
υ//(z, E, μ)

· exp

{
−E − qφ(z)

kTi

}
, (9)

S v(z, Ev, μv) = S v0hv(z)
M2

v

4π(kTv)2
υv//(z, Ev, μv)

· exp

{
−Ev + qφ(z)

kTv

}
, (10)

where k is the Boltzmann’s constant, Ti and Tv are the tem-
peratures, h(z) and hv(z) are the source strengths, and S 0

and S v0 are the average source strengths of the H+ ion and
the H− ion, respectively. The density ni(z) of the H+ ion is
given by integrating the Eqs. (7a) and (7b) over the E − μ
space, and the density nv(z) of the H− ion are given by in-
tegrating the Eq. (8) over the Ev − μv space as [4].
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By substituting Eqs. (7a) and (7b) into Eq. (11), and Eq. (8) into Eq. (12), and interchanging the order of integrations of
them, the ion densities become

ni(z) =
4πB(z)

M2

⎧⎪⎪⎨⎪⎪⎩
∫ L

0
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1
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+
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1
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where Ep = qφ(z′), Bp = B(z′) for z′ < z, Ep = qφ(z), Bp = B(z) for z′ > z, Ep = qφ(z), Bp = B(z) for z′v < z, and Ep = qφ(z′v),
Bp = B(z′v) for z′v > z, and we considered a case that the increase rate of the magnetic field toward the wall is smaller than
that of the electric potential. By substituting Eq. (9) into Eq. (13), and Eq. (10) into Eq. (14), and integrating them for μ, μv

and E, Ev, we obtain

ni(z) = S 0

(
πM
2kTi

) ∫ L

0
dz′I(z, z′)h(z′), (15)
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where
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}1/2⎤⎥⎥⎥⎥⎥⎦ , (z′v > z
)

(18)

where erfc(x) is the complementary error function. As the electron density ne, we use a Boltzmann distribution ne(z) =
n0 exp[eφ(z)/kTe] for simplicity, where n0 is the electron density at z = 0, -e is the electron charge, and Te is the electron
temperature. Substituting Eqs. (15), (16) and the electron density into Poisson’s equation, the plasma-sheath equation is
derived

d2φ

dz2
=

n0e
ε0

exp

(
eφ(z)
kTe

)
− qS 0

ε0

(
πM
2kTi

)1/2 ∫ L

0
dz′I(z, z′)h(z′) +

qS v0

ε0

(
πMv

2kTv

)1/2 ∫ L

0
dz′vIv(z, z′v)hv(z′v). (19)
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The average source strengths S 0 and S v0 are derived from
the equilibrium of the fluxes of the plasma particles at the
wall. We consider jew + jiw + jvw = 0, where jew, jiw and
jvw are the current densities of the electron, the H+ ion and
the H− ion at the wall, respectively. The current densities
are given by jew = −en0{kTe/(2πme)}1/2 exp{eφw/(kTe)},
jiw = qS 0L, and jvw = −qS v0L, respectively, where me

is the electron mass and φw is the wall potential. Further-
more, we define a rate of production amount of the volume
produced H− ions to the H+ ions to be βv = S v0/S 0. The
average source strengths S 0 and S v0 are obtained as

S 0 =
en0

qL (1 − βv)

(
kTe

2πme

)1/2

exp

(
eφw

kTe

)
, (20)

S v0 =
en0βv

qL (1 − βv)

(
kTe

2πme

)1/2

exp

(
eφw

kTe

)
. (21)

3. Numerical Solutions
Equation (19) is solved numerically. We introduce the

normalized variables such as η = (q/kTe)(φw − φ), R =
B/B0, s = z/L, τ = Te/Ti, τv = Te/Tv, Z = q/e, where R
is the mirror ratio and Z = 1 for the hydrogen plasma. The
boundary conditions are dη/ds|s=0 = 0 and η(s = 1) = 0.
We assume the mirror ratio with reference to the expression
used by Sato et al. [4]

R(η) = exp[α{η − eφw/(kTe)}], (22)

where α is a positive constant and indicates a degree of in-
crease of the magnetic field toward the wall. As the value
of the Debye length λD, we will use λD/L = 5 × 10−2 in
all results of this paper. The profile of the normalized elec-
tric potential Φ(s) = −η for various values of α is shown
in Fig. 4. As the degree of increase of the magnetic field
toward the wall becomes large, the sheath width becomes
small. The profile of the normalized electric potentialΦ(s)
for various values of the production amount of the H− ion
to the H+ ion is shown in Fig. 5. As the production amount
of the H− ion becomes large, the sheath width becomes
large. The profile of the normalized electric potential Φ(s)
for various values of the ion temperature τ = τv is shown
in Fig. 6. It is shown that the electric potential strongly
depends on the ion temperature. As the ion temperature
becomes large (τ = τv becomes small), the potential drop

becomes small. Furthermore, the profile of the plasma den-
sity normalized by a sum of the H+ ion density and the H−

ion density at s = 0 for α = 0.1 and 0.3 are shown in Fig. 7.
For the case of the degree of increase of the magnetic field

Fig. 4 Profile of the normalized electric potential Φ(s) for vari-
ous values of α, with τ = τv = 1, βv = 0.2.

Fig. 5 Profile of the normalized electric potential Φ(s) for vari-
ous values of βv, with τ = τv = 1, α = 0.2.

Fig. 6 Profile of the normalized electric potential Φ(s) for vari-
ous values of τ = τv = 1, with βv = 0.2, α = 0.2.

Fig. 7 Profile of the normalized particle density for α = 0.1 and 0.3, with τ = τv = 1, βv = 0.2.
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toward the wall is large, the density of the H+ ion near the
wall increases. This seems because the H+ ions are easy to
move towards the wall under the steep potential gradient
near the wall shown in Fig. 4.

4. Conclusions
The electric potential near the wall for the plasma that

consists of the H+ ion, the volume produced H− ion and the
electron with the magnetic field increasing toward the wall
is investigated analytically. The profile of the electric po-
tential is obtained by solving the plasma-sheath equation.
Effects of the degree of increase of the magnetic field to-
ward the wall, the production rate of the volume produced
H− ion, and the ion temperature on the distribution of the

electric potential are shown. The effect of the ion temper-
ature on the distribution of the electric potential is larger
than the other effects. It is also shown that the density of
the H+ ion near the wall increases when the degree of in-
crease of the magnetic field is large.
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