
Plasma and Fusion Research: Regular Articles Volume 16, 2401086 (2021)

A Mesh-Generation Scheme for the Large Helical Device Based on
the Structure of Magnetic-Field Lines∗)

Daisuke TAKADA, Taku ITOH1), Masahiro KOBAYASHI2) and Hiroaki NAKAMURA2,3)

Graduate School of Industrial Technology, Nihon University, Narashino 275-8575, Japan
1)College of Industrial Technology, Nihon University, Narashino 275-8575, Japan

2)National Institute for Fusion Science, Toki 509-5292, Japan
3)Department of Electrical Engineering, Nagoya University, Nagoya 464-0813, Japan

(Received 30 November 2020 / Accepted 12 February 2021)

We report herein an automated scheme for generating a mesh based on a structure of magnetic-field lines.
For all angles in the toroidal subdomain, the mesh generated by this scheme must not contain broken tetragons.
To satisfy this requirement, we propose herein a first method to detect broken elements and a second method
to automatically modify the broken elements. We use the proposed mesh-generation scheme with magnetic-
field data acquired on the magnetic axis of the Large Helical Device at Rax = 3.75 m. The results show that
broken elements are detected by the first method, and the second method transforms broken elements into regular
elements.
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1. Introduction
In magnetized plasma, plasma transport along

magnetic-field lines becomes several orders of magnitude
larger than cross-field transport. As a result, any mesh for
plasma-transport simulations must be generated based on
the magnetic-field structure to guarantee a clear separa-
tion between the parallel and the cross-field (perpendicu-
lar) transport. The three-dimensional (3D) edge plasma-
transport code EMC3 uses a field-line-aligned 3D grid,
whereby the computation domain is divided into several
subdomains, and field-line mapping (or reversible field-
line mapping) accurately connects the field-line coordi-
nates between subdomains [1]. However, for EMC3-
EIRENE [2], which has been implemented for transport
analysis in the Large Helical Device (LHD) [3–5], the 3D
grid is generated for each toroidal subdomain based mainly
on the following time-consuming manual procedure that
takes into account the 3D magnetic-field structure.

1. Determine the initial toroidal angle φ = φ0.
2. Generate an initial mesh on the R-Z plane for φ =
φ0. Note that all nodes of the mesh become initial
positions for magnetic-field lines.

3. Trace all magnetic-field lines corresponding to the
nodes to the next angle φk+1 = φk + Δφ (k = 0, 1, . . . )
until reaching the last angle. Note that the mesh struc-
ture retains the initial indices given at φ = φ0, so that
each tetragon is reconstructed at the new φ.

author’s e-mail: cida19009@g.nihon-u.ac.jp, itoh.taku@nihon-u.ac.jp
∗) This article is based on the presentation at the 29th International Toki
Conference on Plasma and Fusion Research (ITC29).

Fig. 1 Schematic illustration of a broken element. Yellow and
green lines are twisted between element faces for φ = φk

and φk+1.

In step 3 of this procedure, given that the indices are
retained for all angles, some tetragons in the mesh break
due to strong magnetic shear at the edge region, as shown
in Fig. 1 (see Section 4 for definition of a broken element).
In this case, the mesh generation process starts again from
step 2. Note that the initial mesh in this process must differ
from the previous mesh. Since determining new positions
for nodes that do not break elements until final angle in the
toroidal subdomain is difficult, the restart process is not
launched automatically; instead, the positions of nodes for
constructing the new initial mesh are determined manually.

The purpose of the present work is to develop an au-
tomated mesh-generation scheme that produces unbroken
tetragons for all angles in the toroidal subdomain. Toward
this end, we propose a first method for detecting broken
elements and a second method to automatically modify the
broken elements.
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Fig. 2 Schematic illustration of toroidal subdomain in the LHD.

Fig. 3 Nodes of an almost ellipsoidal shape on the plane for ini-
tial angle φ0 = 0◦.

2. Problem Settings
We consider generating a mesh based on the structure

of the magnetic-field lines. This section presents the prob-
lem settings.

2.1 Toroidal subdomain in LHD
We define a region contained in φ ∈ [0◦, 18◦] as a

toroidal subdomain in the LHD (see Fig. 2, where φ is the
toroidal angle from step 1 in of the mesh-generation pro-
cedure in Section 1. In addition, we define the initial angle
φ0 = 0◦, and the last angle φmax = 18◦.

The magnetic field in the LHD is created by two he-
lical coils and by additional poloidal coils surrounding a
confined plasma [6]. This magnetic field is calculated and
stored in a regular spatial grid, typically with 5 mm steps
in R and Z directions. The data consist of Ri(m), φ j(deg),
Zk(m), and Bi jk = [Bi jk

r , B
i jk
φ , B

i jk
z ]T(T), where Ri, φ j, and

Zk are the coordinates in a cylindrical coordinate system
(R, φ,Z), and Bi jk is the magnetic field at (Ri, φ j,Zk). In
the data, the step sizes for Ri, φ j and Zk are 5 mm, 0.25◦,
and 5 mm, respectively. We also assume that the magnetic-
field strength B can be obtained at any point within the
toroidal subdomain by interpolating adjacent Bi jk.

2.2 Initial mesh
In the plane for the initial angle φ0, we align nodes

in an approximate ellipsoidal contour, as shown in Fig. 3.

Fig. 4 Schematic view of element ( jn + i).

Fig. 5 Initial mesh for the case where a = � = 5 mm and L = 24.

Given the stochastization of the magnetic field near the
edge of the LHD, the magnetic surface is not smooth. To
generate an initial mesh, a smooth magnetic surface is
created by applying a spline scheme to smooth the orig-
inal data. Then initial nodes Xini = {x0, x1, . . . , xn−1}
are obtained by interpolation, so that |xi − x[i+1]n | (i =
0, 1, . . . , n− 1) are almost the same length �, where [i+ 1]n

is the remainder of i + 1 modulo the number n of initial
nodes.

From the initial nodes Xini, we obtain an exact ellip-
soid by applying a least-squares fitting. To extend the grid
radially outward, additional nodes are created along out-
ward normals N = {n0, n1, . . . , nn−1} emanating from the
initial nodes. This is done because the normals obtained
from the exact ellipsoid do not intersect with each other.
Although the outward normals can be calculated from the
interpolation by applying a spline, they sometimes inter-
sect with each other. Given that the normals are used to
generate nodes for the initial mesh, they must not intersect.

The initial mesh consists of nodes x jn+i = xi+a jni (i =
0, 1, . . . , n − 1, j = 0, 1, . . . , L), where a is a parameter,
and L is the number of layers in the initial mesh. For
nodes X = {x0, x1, . . . , xN−1}, element ( jn+ i) of the initial
mesh is constructed as a tetragon ABCD that consists of
{x jn+[i+1]n , x jn+i, x( j+1)n+i, x( j+1)n+[i+1]n }, where N = n(L+1).
As shown in Fig. 4, the vertices A, B, C and D correspond
to x jn+[i+1]n , x jn+i, x( j+1)n+i and x( j+1)n+[i+1]n , respectively.
For the case where a = � = 5 mm and L = 24, the ini-
tial mesh is shown in Fig. 5. In this figure, the elements are
randomly colored. Note that we do not generate the mesh
inside of the ellipsoid, since EMC3-EIRENE is employed
to simulate the peripheral plasma of the LHD.
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3. Tracing Magnetic-Field Lines
All nodes X are on the R-Z plane for φ = φ0, and

the magnetic field lines are traced from these nodes. The
magnetic-field lines on the R-Z plane are determined se-
quentially for φk = kΔφ (k = 1, 2, . . . , nφ) by solving the
following equations, where nφ is the division number for
the φ-direction.

dr
dφ
= r

Br

Bφ
, (1)

dz
dφ
= r

Bz

Bφ
. (2)

To solve (1) and (2), we use the fourth-order Runge-
Kutta method for the first three steps, and the fourth-
order Adams-Bashforth-Moulton method for the remain-
ing steps.

As shown in Fig. 6, layer numbers are assigned se-
quentially from the inside, and the node numbers are as-
signed sequentially counterclockwise from the inside. The
number for a given element is given by the lower-right
node number of the element (i.e., the node number of ver-
tex B in Fig. 4).

To generate a mesh, the mesh of layer zero is first gen-
erated for φk = kΔφ (k = 1, 2, . . . , nφ); that is, after finish-
ing the procedure of layer zero, layer 1 is started. The pro-
cess is similar for layer 2 and grater. For layer j, magnetic-
field lines start from nodes constructing element jn, in as-
cending order. Thus, in Fig. 6, the red dots are the starting
points for each layer, and the elements are generated along
the red arrows by tracing magnetic-field lines. The traces
are repeated until φ = φmax = nφΔφ in the same layer. Af-
ter generating all the elements in a given layer, the process
moves to the next layer (see blue arrows in Fig. 6).

In this process, the mesh structure retains the previous
angle; that is, the node indices for constructing each ele-
ment in the mesh are the same for all angles. For this rea-
son, some of the tetragon elements contained in the mesh
are broken, as shown in Fig. 1. Thus, the mesh-generation
process must detect broken elements. This is done in the
following C-like pseudo-code for mesh generation:

Fig. 6 Schematic diagram showing order in which mesh is gen-
erated.

for( j = 0; j < N; j++){
s j = 0; // step number for node j

}
Δφ = (π(φmax − φmin)/180)/nφ; // φmin = 0, φmax = 18
for( j = 0; j < L; j++){

for(k = 0; k < nφ; k++){
for(i = 0; i < n; i++){

trace( jn + [i + 1]n, k); // for vertex A
trace( jn + i, k); // for vertex B
trace(( j + 1)n + i, k); // for vertex C
trace(( j + 1)n + [i + 1]n, k); // for vertex D
detection(k, jn + [i + 1]n, jn + i,

( j + 1)n + i, ( j + 1)n + [i + 1]n);
}

}
}

trace( j, k){
if(s j ≤ k && s j < nφ) {

The magnetic field line corresponding to x j is traced
to next angle φk+1 = φk + Δφ, by solving (1) and (2).
++s j;

}
}

detection(k, A, B, C, D){
Broken elements are detected by using p = x(k)

D − x(k)
A

and q = x(k)
C − x(k)

B (see Section 4).
}

4. Detecting Broken Elements
Let X(k) = {x(k)

1 , x
(k)
2 , . . . , x

(k)
N−1} be the nodes on plane

R-Z for φ = φk. Note that X(0) = X. Here, x(k)
j is the

coordinate of the magnetic-field line corresponding to x j.
This section proposes a strategy for detecting broken

elements. Toward this end, we first consider straight lines
p̂(α) and q̂(β) in 3D as follows:

p̂(α) = p0 + αs, (3)

q̂(β) = q0 + βt, (4)

where p0 and q0 are the starting positions of p̂(α) and q̂(β),
respectively, and s and t are different unit vectors. If α and
β satisfy

p̂(α) − q̂(β) = 0, (5)

then p̂(α) and q̂(β) intersect. However, in general, p̂(α)
and q̂(β) are skew lines. For this reason, we now consider
determining α and β by minimizing the distance between
the tips of p̂(α) and q̂(β).

When p̂(α) and q̂(β) are projected onto plane s-t,
p̂(α) − q̂(β) must be parallel to s × t if the tips of p̂(α)
and q̂(β) coincide. Thus,

(s × t) · (( p̂(α) − q̂(β)) × s) = 0, (6)

(s × t) · (( p̂(α) − q̂(β)) × t) = 0, (7)
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Fig. 7 Element types (a)–(i) distinguished by α and β.

are satisfied. Using (3), (4), (6) and (7), α and β are given
by

α = − (s × t) · ((p0 − q0) × t)
(s × t) · (s × t)

, (8)

β = − (s × t) · ((p0 − q0) × s)
(s × t) · (s × t)

. (9)

where, p = x(k)
D − x(k)

A (=
−−→
AD) and q = x(k)

C − x(k)
B (=

−−→
BC).

If p0 = x(k)
A , s = p/|p|, q0 = x(k)

B and t = q/|q| in each
element, p̂(α) and q̂(β) are on the R-Z plane for φ = φk.
In this case, α and β satisfy (5). The values of α and β are
calculated by using (8) and (9), and the elements can be
distinguished as types (a)–(i) in Fig. 7. Note that we de-
fine convex tetragons as regular elements. In addition, we
define as broken elements not only tetragons with crossing
sides but also tetragons with a vertex whose inner angle is
greater than or equal to π. If broken elements are detected,
they must be transformed into regular elements.

5. Automatic Mesh Modification
This section proposes a method for automatic mesh

modification for broken elements. When executing the
process for layer j ( j = 1, 2, . . . , L − 1), we assume that
elements generated by the mesh-generation process for
layer ( j−1) are not broken (i.e., vertices A and B are always
normally positioned in all elements). For layer zero, we as-
sume that nodes {x(k)

0 , x
(k)
1 , . . . , x

(k)
n−1} (k = 0, 1, . . . , nφ) can

be generated normally, since they are the innermost nodes
and are almost certainly not broken in the mesh-generation
process.

When element ( jn+i) (i.e., element i of layer j) breaks
for φ = φk, the nodes x(K)

D (K = 0, 1, . . . , k) are regenerated.
This is because generating new nodes along an appropriate
magnetic-field line is required in the modification process.
Note that the modification of element ( jn + i) may also
be done by regenerating nodes x(K)

C (K = 0, 1, . . . , k) of
element ( jn+i). However, we do not regenerate them, since
they also belong to element ( jn+ i−1), which is not broken
(we thus avoid reconstructing unbroken elements). Thus,
this strategy only modifies nodes x(K)

D (K = 0, 1, . . . , k).

Fig. 8 New nodes around x(0)
D .

To modify x(K)
D (K = 0, 1, . . . , k), we generate new

nodes around x(0)
D on the R-Z plane for φ = φ0. For exam-

ple, new nodes are circularly generated, as shown in Fig. 8.
In this figure, the maximum radius rmax < min(a, �) (i.e.,
rmax is smaller than the minimum edge length of the ele-
ment). To minimize changes to the element shape, rmax ≤
0.5 min(a, �) is recommended. In Fig. 8, ΔrD = rmax/nr and
ΔθD = 2π/nθ, where nr and nθ are the division numbers for
the directions r and θ, respectively.

The new nodes are generated in order of proximity to
x(0)

D . Every time a new node x̂(0)
D is generated, we trace

the corresponding magnetic-field line until φ = φk, that is,
x̂(K)

D (K = 1, 2, . . . , k) are determined by solving (1) and
(2). While the tracing process, x(K)

D = x̂(K)
D are assumed,

and the strategy for detecting broken elements is applied
to elements ( jn + i) and ( jn + i + 1) for φ = φK . This
is because their shapes change by x(K)

D = x̂(K)
D . Note that

element ( jn + i + 1) for φ = φk is not yet generated (see
C-like pseudo-code in Section 3).

For all angles φ = φK (K = 1, 2, . . . , k), if elements
( jn + i) and ( jn + i + 1) are not broken, x(K)

D = x̂(K)
D (K =

1, 2, . . . , k) are formally set, and the modification process
terminates successfully. If a broken element is detected
during tracing, the trace exits immediately, and the next
new node x̂(0)

D is generated. After that, a new tracing pro-
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(a)

(b)

Fig. 9 (a) Result of mesh generation for k = 179 (φ = 17.9◦) in
layer 23, and (b) another perspective of the same result.
The red parts are detected as broken elements (The red
parts are already modified by the strategy described in
Section 5). Both panels show the magnetic-field lines and
faces for φ = 18◦ in layers 0 - 22.

cess starts. The modification process continues until suc-
cessful termination, following which the mesh-generation
procedure continues from element ( jn + i + 1) for φ = φk.

6. Examples
In this section, we apply the mesh-generation scheme

that includes detecting broken elements and automatic
mesh modification. The parameters are set as n = 778,
L = 24, a = � = 5 mm, nφ = 180, rmax = 0.5�, nr = 32,
and nθ = 128. To generate an initial mesh, we use the
nodes from Fig. 3, and the initial mesh generated is shown
in Fig. 5. The mesh is generated in the toroidal subdomain
for φ = [0◦, 18◦], and φ0 = 0◦. The present analysis uses
the magnetic-field configuration of Rax = 3.75 m, where
Rax is a magnetic axis position.

Figure 9 (a) shows a mesh generation result for k =
179 (φ = 17.9◦) in layer 23. The outermost mesh is the
result. Figure 9 (b) shows another perspective of the same
result. Figure 9 also shows the mesh generated for k = 180
(φ = 18◦) in layers 0 - 22 and the magnetic-field lines ob-
tained by solving (1) and (2). Although mesh generation
produces all elements, only elements in the left half of the
initial mesh in Fig. 5 are updated; those in the right half
remain unchanged with respect to the initial mesh. This is
because only the elements in the left half change signifi-
cantly. Thus, we focus on the elements in the left half of
the initial mesh.

Fig. 10 Result of modifying element 18624 for k = 180 (φ =
18◦). This element is detected as type (c).

Fig. 11 Result of modifying element 18630 for k = 180 (φ =
18◦). This element is detected as type (d).

Figures 9 (a) and 9 (b) show regular elements in green
and blue based colors, which reveal that many elements
for φ = 17.9◦ and 18◦ are longer than those for φ =
0◦ shown in Fig. 5. This is because the magnetic-field
strength changes considerably. Depending on the struc-
ture of magnetic-field lines, broken elements sometimes
appear. The method described in Section 4 detects the
red parts as broken elements. Note that these broken ele-
ments are automatically modified by the method described
in Section 5. The red parts in Figs. 9 (a) and 9 (b) are al-
ready modified by the method of Section 5.

For k = 180 (φ = 18◦) in layer 23, some elements are
detected as broken. Figures 10 and 11 show the results of
each type of modification, which appear at elements 18624
and 18630, respectively. Elements 18624 and 18630 are
detected as types (c) and (d), respectively, as shown in
Fig. 7. In Figs. 10 and 11, Dnew denotes the new nodes
generated by the method of automatic modification of el-
ements. In these figures, new edges appear as red lines.
These results show that tetragons are constructed by gener-
ating Dnew, which leads to the conclusion that, in this case,
broken elements are detected and automatically modified
by the methods detailed in Sections 4 and 5.
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7. Conclusion
To construct an automated scheme for generating

a mesh based on the structure of magnetic-field lines,
we propose herein two strategies for detecting broken
elements and automatically repairing them. A mesh-
generation scheme based on these strategies has been ap-
plied to a magnetic-field data acquired along the magnetic
axis at Rax = 3.75 m. The results lead to the following
conclusions:

1. Broken elements can be detected as described in Sec-
tion 4.

2. Broken elements can be automatically transformed
into regular elements as described in Section 5.

Although broken elements can be modified by the
proposed method, the elements remain thin tetragons, as
shown in Figs. 10 and 11. Even if a broken element can be
modified to a regular shape, the modified element may be
excessively thin. In future work, we will therefore investi-
gate techniques to detect excessively thin structures.

In addition, the mesh-generation scheme proposed

herein does not consider the magnetic-field strength in
the algorithm. Thus, the fineness of the initial mesh is
nearly identical over the whole region. In practice, the
mesh should be finer in regions of greater magnetic-field
strength. In future work, we will therefore develop a
mesh-generation scheme that considers the magnetic-field
strength.

Acknowledgment
This work was partially supported by JSPS KAK-

ENHI Grant Number JP18K11329. In addition, this work
was supported in part by NIFS Collaboration Research
Program (NIFS20KNTS068).

[1] Y. Feng and F. Sardei, Phys. Plasmas 12, 052505 (2005).
[2] Y. Feng et al., Contrib. Plasma Phys. 54, 426 (2014).
[3] S. Dai et al., Nucl. Fusion 56, 066005 (2016).
[4] G. Kawamura et al., Contrib. Plasma Phys. 54, 437 (2014).
[5] M. Kobayashi et al., Nucl. Fusion 53, 033011 (2013).
[6] N. Ohyabu et al., Nucl. Fusion 34, 387 (1994).

2401086-6


