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In this study, a new numerical method for constructing flux surfaces for three-dimensional (3D) toroidal
magnetic fields is proposed. In the method, multiple field lines starting from all grid points in the computational
domain are simultaneously followed to obtain the field-line average. The field-line average obtained for the entire
domain is used to label flux surfaces as the radial coordinate based on a reasonable assumption that the field-line
average approximates the flux surface average when continuous nested surfaces exist. It is demonstrated that
a severe numerical discontinuity in the constructed surfaces, which is often observed near a low-order rational
surface in a conventional method based on the Poincaré map, can be avoided using the proposed method, enabling

the construction of smooth flux surfaces.
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1. Introduction

The construction of magnetic coordinates is a funda-
mental requirement to study magnetically confined plas-
mas. It is done by finding a transformation between the
magnetic coordinates (p, 8, {) and ordinary spatial coordi-
nates e.g., cylindrical coordinates (R, ¢,Z), where p de-
notes the label of the flux surfaces, and 6 and ¢ are the
poloidal and toroidal angle-like variables, respectively. To
this end, a family of continuous nested flux surfaces span-
ning from the magnetic axis to the last closed flux surface
(LCFS) should be constructed for a given magnetic field in
a torus plasma. In axisymmetric tokamaks, the magnetic
field is two-dimensional, and nested surfaces always exist
owing to the symmetry. That means, there are no diffi-
culties in the construction of the magnetic coordinates. In
contrast, in three-dimensional (3D) devices, the existence
of the nested surfaces is not guaranteed owing to the ab-
sence of symmetry. Because the existence of surfaces in
a certain region in a 3D device cannot be known a priori,
the numerical construction of flux surfaces with sufficient
accuracy is difficult even when the nested surfaces exist.

Thus far, several methods have been proposed to iden-
tify positions of flux surfaces and to construct magnetic co-
ordinates for 3D magnetic field configurations [1-8]. Al-
though there are many differences among the methods,
they commonly rely on long-field line tracing to obtain
their coordinate values on a flux surface. Because a field
line lies on a flux surface, successive points obtained by
field-line tracing belong to a surface specified by the ini-
tial point (R, #,Z) = (Rini> Pini>Zini)- That is, each field
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line has a one-to-one relationship with a surface. Then, the
transformation between (p, 6,¢{) and (R, ¢,Z) on the sur-
face can be constructed by either Fourier transformation
along the field line [1-4,7] or directly interpolating succes-
sive points [8]. The procedure is repeated, while changing
the initial point (Rjni, Pini, Zini), OF the surface, which deter-
mines the global transformation defined from the axis to
LCFS.

Although the methods based on long-field line tracing
work well for many regions of interest with good nested
surfaces, as we shall see later, the derivative (9/dp, 0/06,
and 0/9¢) of the transformation often suffers from numer-
ical discontinuity near a low-order rational surface, caus-
ing the discontinuity in other metric coefficients and the
Jacobian. The cause of the discontinuity is still unclear
and has not been fully addressed in this study as it could be
closely related to more difficult questions of nonlinear res-
onance and the formation of islands/chaos near the rational
surface. However, from the viewpoint of subsequent calcu-
lations such as instability analyses and/or transport simula-
tions, it is necessary to construct globally smooth coordi-
nates without any discontinuity in computational domain
since they are usually performed in the magnetic coordi-
nates (p, 0, ).

To overcome the discontinuity, we propose a novel nu-
merical method to construct smooth flux surfaces, or radial
coordinate p, for an arbitrary magnetic field in this study.
The method is called dense mapping. In the method, mul-
tiple field lines starting from all grid points in the computa-
tional domain are simultaneously followed to compute the
average along each field line. Then, the field-line average
obtained over the entire domain is used to label flux sur-
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faces as the radial coordinate p based on a reasonable as-
sumption that the field-line average can be regarded as an
approximation of the flux surface average in 3D magnetic
fields with continuous nested surfaces. It is demonstrated
that the above discontinuity can be successfully avoided
because of the smoothing effect on p in the method.

The rest of this paper is organized as follows. A new
numerical method to construct smooth flux surfaces using
multiple field-line tracings, dense mapping, is described in
Sec. 2. A brief description of a conventional method based
on long field-line tracing and the Poincaré map is also pre-
sented in this section. In Sec. 3, two methods are applied to
a model stellarator magnetic field. The constructed mag-
netic surfaces and relevant geometrical quantities are ex-
amined by comparing the new method with the conven-
tional method. Finally, Sec. 4 presents the summary.

2. Numerical Construction of Flux

Surfaces

In this section, two numerical methods to construct
flux surfaces are described. First, a method based on
the Poincaré map, where a single field-line tracing is per-
formed to construct a transformation on a surface, is briefly
reviewed in Sec.2.1. Thereafter, in Sec.2.2, dense map-
ping method based on multiple field-line tracings is pre-
sented.

2.1 Construction of surfaces based on the
Poincaré map
The starting point is the equations of a magnetic field
line in the cylindrical coordinates (R, ¢, Z):

a_drR s _az 0
B BR B¢ BZ

where B* = B - Vu (u = R, ¢, Z) is the contravariant
component of B, and d/ denotes the arc length along the
field line. Assuming that B? is non-vanishing, which is
true for toroidal devices such as tokamaks and stellarators/
heliotrons, we obtain the following set of equations from

Eq. (1):

dR _ B*
B @
dZ B*
@B ®

A magnetic field line is followed using Egs. (2) and (3).
Consequently, one can obtain successive puncture points
of (R, Z) at each ¢ step, yielding the Poincaré map on each
¢-fixed plane. The successive points belong to a flux sur-
face specified by the initial value of (R,Z) at ¢ = 0. The
surface is denoted by p, which is defined later in this sub-
section. It should be noted that successive points on each
¢-fixed plane become dense and form a closed line when
the rotational transform < of the surface is irrational. If the
surface is found to be a low-order rational surface, then the

initial point must be displaced by a small amount to dis-
card the surface since a closed line cannot be constructed
within an acceptable accuracy on the surface.

We now have successive points of R and Z on ¢-
fixed planes belonging to a p surface. Therefore, we
can construct the local transformation between (R, ¢,Z)
and (p, 6, ) on the surface. For this purpose, it is con-
venient to introduce other coordinates (r,,{), where
r = \/(R —Rax)2 +(Z - Zax)2 is the radius measured
from the magnetic axis (Rx,Zax) on each ¢ plane, ¢ =
tan~! [(R — Rux) / (Z — Zyy)] is the geometrical poloidal an-
gle, and { = —¢ is the toroidal angle. Note that the position
of (R, Zux) varies depending on ¢ and must be identified
in advance to obtain r and . Using this definition, the suc-
cessive points of R and Z for each p and ¢ are combined
into », which is then regarded as a function of only 6 by
choosing the poloidal angle of the magnetic coordinates as
6 = 4, that is, r = r(6; p, {) with both p and { being fixed.
Interpolating r in the 6 direction on every { = —¢ plane
gives the local transformation between (r, ¢, {) and (p, 6, {)
on each p surface.

Next, the procedure is repeated, while changing the
initial point, or surface p. The coordinate p is chosen
such that p is monotonically increasing with p = 0 at
the magnetic axis and p = 1 at the LCFS. Choosing
p = r"/ay = ppm meets the requirement, where »* = r( =
0,¢ = 0) is the radius measured along the line segment at
(¥, 0) = (0,0) (the line segment from the axis to the LCFS
along Z = 0 on the ¢ = 0 plane), and ay denotes r* at the
LCEFS along the line segment, which must be identified be-
fore the mapping. Finally, connecting r in the p direction
by interpolation yields the global transformation between
(r,9,¢) and magnetic coordinates (opm, 8, ). Hereafter,
we refer to the method based on the Poincaré map as sim-
ple mapping, and Fig. 1 (a) depicts a schematic view of the
method. In Fig. 1 (a), the i-th surface denotes the surface
determined by field-line tracing starting from the initial
point of (r,9,¢) = (r; = iAr,0,0) ( = 1,2,3,---), where
Ar = ag/N,, and N, is the number of radial grids. Simple
mapping is similar to the method proposed by Predebon et
al. [8], where they used the poloidal angle of straight field
line coordinates instead of the geometrical angle used here
with the help of © evaluated using a more sophisticated
technique.

2.2 Dense mapping based on multiple field-
line tracings
Our approach is an extension of Todoroki’s
method [9], which computed the rotational transform
1 with high accuracy for any magnetic field line. From
Ref. [9], the geometrical poloidal angle ¢ along the field
line is related to the toroidal angle { = —¢ as follows:

:_IZ =1+ Z iCmna)mn exp (lwmn{) 5 (4)

m,n
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Fig. 1 Schematic views of (a) simple mapping and (b) dense
mapping to construct flux surfaces. In dense mapping (b),
only the k = 1 ({ = 0) plane is illustrated for simplicity.

where c¢,,, represents the Fourier components of ¢, w,,, =
nu — n, and m and n are the poloidal and toroidal mode
numbers, respectively. Integrating Eq. (4) along the field
line yields,

dmax 9
~ —G(0)de, 5
’ Iz dZ (Ode )

where (n.x denotes the maximum value of ¢ in the
field-line tracing and Gaussian window function G({) =
a/ (gmax \/77) exp (—a2§ 2 / £2.,) with a numerical parameter
« is used to eliminate the end effect [4]. The specific vol-
ume U = dy/dV is also calculated using the same proce-
dure [9]:

dmax ]
U—I;MEG@@: (6)
where ¢ and V are the toroidal flux divided by 27 and
the volume enclosed by the magnetic surface, respec-
tively. In deriving Eq. (6), we exploit the fact that U =
dy/dV is equivalent to the field-line integral of B¢, or
U = [(1/B)d, see Ch.12 of [10]. Since the Todoroki’s
method computes the field-line integral, it can be used to
evaluate the field-line average of any quantity as

. ., (dl 1 [ A
A= | A— - = — —G($)de, 7
IR U[mm(05 )
where A = A(p, 6, {) is an arbitrary function.
The field-line average A is not necessarily a constant

on a surface but depends on field lines on which the inte-
gral is performed, indicating that it cannot be used to label

surfaces as the radial coordinate p. In fact, this can occur
on rational surfaces in non-axisymmetric devices. Practi-
cally, however, A can be used as p in many typical situa-
tions where continuous nested surfaces exist. This is justi-
fied as follows. On an irrational surface, A can be used to
find the flux surface average (A) = [ d6dZ vgA/ [ d6ds /g
by following the field line long enough to cover the entire
surface (refer to Ch.4.9 of [10] for more detailed discus-
sion), where /g is the Jacobian of (p, 6, () coordinates.
Concerning the rational surface, as every rational surface
can be approximated by an infinitesimally close irrational
surface, (A) on the rational surface should be continuous
and infinitesimally close to those on neighboring irrational
surfaces. Thus, A on the rational surface is expected to
converge to a unique value, regardless of the field lines;
A — (A) for every field line lying on a rational surface.
This enables us to use A as the radial coordinate by choos-
ing A such that A is monotonically increasing, for example,
A = r2. In this study, we use p = \/ﬁ/ao = ppwm for the
method. Note that the discussion here is rather intuitive
than rigorous. The validity of the convergence of A toward
(A) would be sensitive to the magnitude of the nonlinear
resonance on the rational surface, which could break the
surface into islands/chaos. In that case, the method is not
applicable because the flux surface average is not mean-
ingful, making it inappropriate to define the surface label
by the field-line average. This topic is left for future study.

The transformation between (r, 9, {) and (oppy, 6, {) is
numerically constructed as follows. First, as in the previ-
ous subsection, the poloidal angle 6 is chosen as 6 = ¥.
The remaining task is to determine the transformation of
r & ppum at each 6 and £, which gives the overall trans-
formation. Figure 1(b) shows the schematic view of the
method. As shown in the figure, field lines starting from all
initial points (depicted by open circles) densely covering
the entire computational domain inside the LCFS are fol-
lowed, which gives ppy at each initial point, ppm(7i, 4, {i)
(i, jk = 1,2,3,---), where r; = iAr, 9; = (j — 1)AY,
and ¢ = (k — 1)AZ denotes the initial point from which
the field line is traced; Ar = a/N,, AY = 2n/Ny, and
Al = (2r/N)/Ng; a is the radius of the LCFS along the
(¥}, {&) line segment; N is the number of field periods; and
N9, is the number of grids in each direction. In following

the field lines, we can compute ppm = \/rT2 /ap with the
embarrassingly parallel approach due to the independence
of Eq. (7) for each field line. That is, ppy = \/rfz/ao of
each field line can be computed entirely in parallel. Note
that points with the same ppy value belong to the identical
surface. Hereafter, we refer to the method as dense map-
ping; we need to follow multiple field lines to identify a
flux surface in this method, whereas the single long field-
line tracing gives a complete information on a surface in
simple mapping. After determining ppy at every point in-
side the LCFS, the numerical inversion of ppp(r, 9, {) into
r(ppm, 0, {) at each (6, {) is easily calculated using numer-
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ical interpolation, which results in the global transforma-
tion.

The present method relies only on the average along
the field line, 72, to find the transformation between
(opm, 0,¢0) & (r,9,¢). Using the average as the radial
coordinate instead of local coordinate values, the transfor-
mation between r < ppy is expected to be smooth and
continuous. This is examined in the next section.

3. Numerical Results

In this section, simple mapping and dense mapping
are tested by applying them to a non-axisymmetric mag-
netic field. Here, we consider a model 3D toroidal mag-
netic field derived by Dommaschk [11], where the mag-
netic field B is given by the scalar potential V, called
the Dommaschk potential, as B = VV(R,¢$,Z). The
Dommaschk potential V is determined to satisfy the
solenoidal condition of B, V- B = 0, and is formally ex-
pressed as

ByRy ByRy Z

VR.$,2) = 21 ¢+ 2

NI
{VI(\,C’)[(R,Z) cos (N¢) + V) (R, Z) sin (N¢)} - (8)

where Ry and By are given numerical constants that repre-
sent the position of the reference magnetic axis and the
reference magnitude of the magnetic field, respectively;
VI(V?; and Vz(\;)z denote analytic functions of (R, Z) for a given
N and [; N represents the number of field periods, and /
(roughly) controls the shape of the poloidal cross-section.
It can be seen that VX B = V x VV = 0, implying
that the field is current-free. An important feature of the
Dommaschk potential is that V- B = 0 is satisfied for arbi-
trary choices of N and [.

In this study, we use a simple Dommaschk potential
V presented in [12], where the number of field periods is
chosen as N = 5, and explicit expressions for V](\f)l and V](\;)l
are described in detail. Parameters Ry and By are arbitrary,
and results presented below do not change for any choice.
It should be noted that the simple Dommaschk potential
used here has a planar magnetic axis, Ry (¢) = Ry. Fig-
ure 2 shows Poincaré plots on the ¢ = 0 and (27/N)/4
planes, respectively. Here, the magnetic field-line tracing
is performed using the 4th order Runge—Kutta method with
A¢p = (2n/N)/256, where the step size is determined from
convergence tests. The number of toroidal turns (the num-
ber of periods that the field lines are followed) is chosen
as Nym = 1024 to make the Poincaré plots visible, and
a = 3 is used for the Gaussian window function G(¢) with
{max = 64 X (2n/N), where @ = 3 is a typical choice ac-
cording to Ref. [9]. From the figure, the magnetic field is
found to have simple elliptic surfaces. Figure 3 shows the
|| profile as a function of ppy;, where ¢ is calculated us-
ing Eq. (5). Note that the rotational transform < is negative
because B? < 0 (B? > 0) for the field considered here.
From the figure, we can see that |¢| of the field is relatively

Zlag
Za,
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24 24
24 18 12 06 0 06 12 18 24 24 18 12 06 0 06 12 18 24
(R-Ro)/ag (R-Rg)/ag

Fig. 2 Poincaré plots of magnetic field lines at (a) ¢ = 0 and
(b) ¢ = (2n/N)/4. A thick black line denotes the last
closed flux surface.
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Fig. 3 Rotational transform || profile as a function of ppy. The
vertical lines in the figure denote the position of typical
low-order surfaces with m/n = 10/5 and m/n = 9/5,
respectively.

small, with |z| < 0.5 at the axis and ~ 0.6 at the LCFS. In
Fig. 3, positions of two typical low-order rational surfaces
of m/n = 10/5 and 9/5 are also shown.

In what follows, we compare the constructed sur-
faces and some derived quantities obtained by simple map-
ping and dense mapping, respectively, for the magnetic
field in Fig.2. The 4th order Runge—Kutta method is
used again for the field-line tracing, where the step size
A¢ = (2m/N)/256 is the same as that used in Fig. 2. The
cubic splines are used for the interpolation in both methods
with (N, Ng, N;) = (80,256,256). For simple mapping,
the number of toroidal turns is determined as Ny, = 1024
from convergence tests. For dense mapping, we used pa-
rameters @ = 3 and {nax = Num X 27/N) = 64 X (21/N),
as used in Fig. 3. It should be noted that the choice of {ax
(Nwm) for a given «a is quite important for dense mapping
and will be discussed later in this section.

First, we examine ppy = const. surfaces constructed
using dense mapping. Figure 4 shows the contours of ppy
surfaces on the ¢ = 0 and (27/N)/4 planes. It is con-
firmed in Fig. 4 that the shapes of the surfaces are simi-
lar to those in Fig. 2, which shows that the dense mapping
method works well to construct surfaces. The accuracy
of the constructed surfaces in Fig. 4 is quantitatively veri-
fied using the residual level of the radial component of B,
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Fig.4 Contour of ppy at (a) ¢ = 0 and ¢ = (27/N)/4 con-
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Fig. 5 Variation of the residual level ¢ in Eq. (9) evaluated for
the surfaces constructed by simple mapping (top) and
dense mapping (bottom): (a) and (c) ¢ = O plane; (b)
and (d) ¢ = (27/N)/4 plane.

B? = B - Vp, which should be zero if constructed surfaces
are actually magnetic surfaces. The residual ¢ is defined as

5= {B — (BB, + BB;)" 2} /Bo. ©)

From the relation of B> = B’B, + B’By + B*B;, it can be
readily found that 6 becomes small when the magnetic field
lies on the surface (the surface-normal component of B,
B, becomes small), where B, = (0r/du)- B (u = p,0,{) is
the covariant component of B. The residual 6 values eval-
uated for both methods are shown in Fig.5 on the same
¢ planes as in Figs.2 and 4. It is confirmed in Fig. 5 that
residuals of both methods are at the same level, which in-
dicates that dense mapping constructs surfaces within the
same accuracy as simple mapping.

Next, the radial derivative dr/dp is examined, where
p = ppm and p = ppym are used for simple mapping and

Fig. 6 Radial derivative of r = r(p, 0, {), dr/dp, for the surfaces
constructed by simple mapping (top, p = ppm) and dense
mapping (bottom, p = ppm): (a) and (c) contour of dr/dp
on the ¢ = 0 plane; (b) and (d) dr/dp profile as a func-
tion of the corresponding radial coordinate p for several
6 values on the ¢ = 0 plane.

dense mapping, respectively. Figures 6(a) and (c) show
contour plots of dr/dp on the ¢ = 0 plane for respective
methods, and (b) and (d) show the corresponding dr/dp
profile as a function of p at several 6 values indicated in the
figures. From Figs. 6 (a) and (b), the discontinuity in dr/dp
occurs near the edge region of ppy =~ 0.8 for simple map-
ping, where the low-order rational surface of m/n = 9/5
is located, whereas the discontinuity disappears for dense
mapping, as shown in the bottom figures in Fig. 6.

To see how dense mapping improves dr/dp, r profiles
of both methods are compared in Fig. 7, where r is plotted
as a function of ppy for several 6 values on the ¢ = 0 plane
to make a detailed comparison of both methods. This fig-
ure confirms that r for both methods shows a fairly good
agreement, except in neighborhoods of the m/n = 9/5 sur-
face at p ~ 0.8. It can be seen in the figure that r = r(opm)
of simple mapping locally shows a somewhat flattened pro-
file, while the radius r constructed by dense mapping is
slightly modified near the rational surface (see the enlarged
view at the bottom of Fig. 7). Although the change in r is
quite small, it makes dr/dp of dense mapping smooth, indi-
cating that the field-line average in constructing the radial
coordinate p introduces a smoothing effect on the transfor-
mation between p and r. The smoothing effect depends on
{max» O Ny used in computing the field-line average. For
example, for the configuration considered here, r = r(p) of
dense mapping also tends to show similar flattening as sim-
ple mapping for a larger Nym = 100, resulting in the dis-
continuity, although the discontinuous behavior in dense
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Fig. 7 (Top) Constructed radius r = r(p,0,¢) as a function of
ppm by simple mapping (solid lines denoted by PM) and
dense mapping (symbols by DM) for several 6 values on
the ¢ = 0 plane. (Bottom) Enlarged view for the 6 ~ 27/4
case at 0.78 < ppm < 0.84.

mapping is not so significant compared to that observed in
simple mapping. From numerical tests, Ny, = 64 with
a = 3 has been used here. Unfortunately, however, it
is difficult to know an optimal choice of Ny, and @ for
general cases; since they could generally depend on con-
figurations, the parameters should be chosen carefully. In
contrast, adequately large Nym (Nwm = 1000 for the case
here) should be used in simple mapping. Since Ny cor-
responds to the number of points in Poincaré map in this
method, the poloidal interpolation to obtain a surface in
simple mapping would not work well when Ny, is small.

Identifying the cause of the discontinuity is difficult.
As shown in Fig. 5, the accuracy of the constructed sur-
faces is almost the same for both methods, implying that
the discontinuity occurs physically rather than numerically.
A possible candidate for the discontinuity is the nonlin-
ear resonance near the low-order rational surface, which
can break the surfaces and lead to the formation of islands
and/or chaotic regions. Although the rational surface of
m/n = 9/5, where the discontinuity appears, is not ac-
tually broken, the resonance could deteriorate the surface
through the integrability breaking at that point. Further-
more, every low-order rational surface does not necessarily
yield a discontinuous radial derivative. In fact, as found in
p =~ 0.2 of simple mapping in Fig. 6, the m/n = 10/5 ratio-
nal surface does not exhibit the discontinuity. Responding
to these questions is beyond the scope of this work and is
left for future studies.

Finally, the derivatives of r in the 6 and { directions
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Fig. 8 Poloidal angle derivative of r = r(p, 8, {) for the surfaces
constructed by simple mapping (top, p = ppym) and dense
mapping (bottom, p = ppm): (a) and (c) contour of dr/d6
on the ¢ = 0 plane; (b) and (d) dr/d0 profile as a func-
tion of the corresponding radial coordinate p for several
6 values on the ¢ = 0 plane.

are examined. Figures 8 (a) and (c) show contour plots of
0r/06 on the ¢ = 0 plane for simple mapping and dense
mapping, respectively; (b) and (d) show the correspond-
ing 0r/d6 profiles as a function of p for several 6 values
indicated in the figures, where p = ppy and p = ppy are
used in (b) and (d), respectively. From Fig. 8 (b), dr/00
shows a similar discontinuity as in Fig. 6 (b), although it
is not so significant compared with that in dr/dp (in fact,
the discontinuity disappears for the § = 27/8 case, where
the clear discontinuity occurs for dr/dp). The discontinu-
ity can be successfully avoided again by dense mapping,
as shown in Fig. 8 (d). The situation is similar to that of
the {-derivative. This indicates that the smoothing effect
by dense mapping can also improve the continuity in the
derivatives along the surface.

4. Summary

In this study, we proposed a novel numerical method
for constructing continuous and smooth flux surfaces for
general 3D magnetic configurations with good nested sur-
faces. The method is called dense mapping. In this
method, multiple field lines starting from all grid points
in the computational domain are simultaneously traced to
compute the field-line average at each point. The field-line
average obtained for all grid points through this process
was then used to define the label of the flux surface, or the
radial coordinate p in the magnetic coordinates. A model
3D toroidal magnetic field of Dommaschk type was used
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to examine the continuity of surfaces constructed using
two methods: dense mapping and the conventional method
based on the Poincaré map (simple mapping). It was found
that simple mapping induces various numerical discontinu-
ity in the derivatives of r near a low-order rational surface.
Conversely, it was demonstrated that the discontinuity can
be successfully avoided by dense mapping owing to the
smoothing effect on the transformation between p and r. It
should be noted that surfaces of dense mapping around the
low-order rational surface are not exactly the same as those
of the Poincaré map; the smoothing effect slightly changes
the surfaces within a reasonable accuracy. Although it is
not mathematically rigorous, the proposed method has a
general applicability to any 3D magnetic field as long as
continuous nested surfaces are seen to exist, as it only re-
lies on the field-line average.

The computational cost of dense mapping is much
higher than that of the conventional mapping. This is be-
cause the former method requires one to follow all field
lines starting from all grid points in the domain to iden-
tify positions of surfaces globally, whereas the single field-
line tracing gives a transformation on a surface in the lat-
ter. However, in practice, because multiple field-line trac-
ings in dense mapping can be performed independently
for each field line, we can reduce the computational time
on recent computers with many cores/nodes by exploiting
embarrassingly parallel computations of multiple field-line
tracings.

It should be emphasized that the construction of the
smooth magnetic coordinates is crucial for subsequent cal-
culations such as stability analyses and transport simu-
lations. Because low-order rational surfaces usually ex-
ist in 3D toroidal magnetic fields, e.g. 3D MHD equilib-
ria by HINT [13] and magnetic fields determined by the
Biot—Savart law in coil optimizations [14], the discontinu-
ity around the rational surfaces could be problematic in

such equilibria. The dense mapping method presented here
provides a simple and practical tool to construct smooth
magnetic coordinates for the equilibria, which are used as
input for the subsequent calculations.
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