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Likelihood Identification of High-Beta Disruption in JT-60U
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Prediction and likelihood identification of high-beta disruption in JT-60U has been discussed by means of
feature extraction based on sparse modeling. In disruption prediction studies using machine learning, the selec-
tion of input parameters is an essential issue. A disruption predictor has been developed by using a linear support
vector machine with input parameters selected through an exhaustive search, which is one idea of sparse model-
ing. The investigated dataset includes not only global plasma parameters but also local parameters such as ion
temperature and plasma rotation. As a result of the exhaustive search, five physical parameters, i.e., normalized
beta βN, plasma elongation κ, ion temperature Ti and magnetic shear s at the q = 2 rational surface, have been
extracted as key parameters of high-beta disruption. The boundary between the disruptive and the non-disruptive
zones in multidimensional space has been defined as the power law expression with these key parameters. Conse-
quently, the disruption likelihood has been quantified in terms of probability based on this boundary expression.
Careful deliberation of the expression of the disruption likelihood, which is derived with machine learning, could
lead to the elucidation of the underlying physics behind disruptions.
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1. Introduction
Disruption is a serious threatening event in tokamak

plasmas, resulting in large electromagnetic and thermal
loads on structural components of a tokamak device. In or-
der to avoid critical damage of a device and ensure reliable
operation, prediction, avoidance, and mitigation of disrup-
tion are crucial issues, in particular, in ITER [1, 2] as well
as a future tokamak fusion reactor. Disruption is caused
by a variety of magnetohydrodynamics (MHD) instabili-
ties [3, 4], where major driving forces are the gradients of
plasma currents and pressure.

While the physical modeling of disruption is progress-
ing, reliable prediction of disruption still remains an open
issue. In parallel with the elaboration of physics model-
ing, data-driven approaches to the prediction of disruption
is attracting much attention and a variety of methods have
been applied to this issue [5–8]. The criteria called disrup-
tivity was proposed to define the likelihood of a disrup-
tion in JET [9] and NSTX [10]. The disruptivity here is
defined as the number of disruptions that occur in a spe-
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cific parameter space divided by the duration time that the
plasma is in that state. The relationships between disrup-
tivity and operational boundaries has been discussed sta-
tistically. Recently, the onset of tearing instability, which
is one of the major causes of disruption, has been charac-
terized using hazard function based on the survival analy-
sis method [11] in DIII-D [12]. It should be noted that the
interpretable disruption prediction is thought to be impor-
tant not only to understand disruption dynamics but also
to secure extrapolatable capability [13]. Appropriate se-
lection of the input parameters is an essential element in
the development and interpretation of a disruption predic-
tor independently of the method of machine learning such
as neural network, support vector machine, or random for-
est. In the earlier study [14], selection of input parame-
ters was assessed by exhaustive search (ES) on the subject
of predicting high-beta disruption in JT-60U with support
vector machine (SVM). ES is one method of sparse mod-
eling, which exploits the inherent sparseness in all high-
dimensional data to extract the maximum amount of infor-
mation from the data [15], and has been applied to devel-
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opment of a disruption predictor. This scheme of machine
learning has improved the performance of the classifier for
the prediction of disruption.

In the present study, the SVM predictor has been de-
veloped and the input plasma parameters have been se-
lected by ES using a new dataset in which local parameters
are added to the dataset in a previous study [14]. The SVM
provides the expression of the boundary to classify the dis-
ruption zone and the non-disruption zone. The distance
from the boundary can be a meaningful scale to discuss
the likelihood of disruption which is expected to prevent
disruptions.

This article is organized as follows: Section 2 de-
scribes the high-beta experiments and disruptions in JT-
60U and the result of feature extraction by ES. Section 3
presents discussions of the disruption likelihood. Section 4
concludes the paper.

2. Beta Limit and High-Beta Disrup-
tion

2.1 High-beta disruption in JT-60U
High-beta disruption in JT-60U has been investigated

in this study. It is known that high-beta disruption has less
obvious precursors than other types of disruptions such as
density-limit disruptions and vertical displacement event
(VDE) disruptions [16]. The difficulty of detection of pre-
cursors is catenated with difficulties in predicting disrup-
tion and identifying beta limit.

In this study, 36 plasma discharges were identified as
“disruptive” discharge with the criterion that plasma cur-
rents shut down with their decay times shorter than 40 ms.
Here, only current quenches during the flattop phase with
an Ip of 0.9 MA have been taken into account. The oc-
currence of current quench is defined as the time at which
plasma current falls below 95% of the flattop current. The
decay time is defined as the time divided by 0.6 from the
occurrence of current quench to the time plasma current
falls below 40% of flattop current [17]. The discharges
taken into the dataset are 75% of available discharges in
which plasma current shut down. On the other hand, sixty-
one plasma discharges in which the plasma current is con-
trolled to be stationary at 0.9 MA, are defined as “non-
disruptive” discharges.

Figure 1 shows toroidal beta βt plotted against the
Troyon limit Ip/aBt for discharges that are compiled in
the dataset. According to Fig. 1, disruptive discharges are
distributed in a relatively higher beta regime than non-
disruptive ones. Here, the dashed lines in Fig. 1 correspond
to the typical values of normalized beta βN, which is de-
fined as follows:

βN =
βt[%]

Ip[MA]/a[m]Bt[T]
. (1)

In the present experiment, suppression of the resistive wall
mode (RWM) with a growth time corresponding to the skin
time of the resistive wall was attempted by driving toroidal

Fig. 1 Toroidal beta βt against Troyon parameter Ip/aBt in the
analyzed dataset. Orange and blue dots show data points
from disruptive and non-disruptive discharges, respec-
tively. The dashed lines correspond with normalized beta
βN.

rotation of plasma with neutral beam injection (NBI). Con-
sequently, the beta value was close or above the no-wall
beta limit which is given as three times the internal induc-
tance li by stability analysis using MARG2D [18–20].

2.2 Feature extraction of high-beta disrup-
tion

The combination of plasma parameters that describes
the feature of high-beta disruption has been extracted by
the K-sparse exhaustive search (ES-K) connected with lin-
ear SVM (ES-K-SVM for short). ES-K is one of the sparse
modeling techniques which exploits the inherent sparse-
ness in all high-dimensional data to extract the maximum
amount of information from the data [15]. In ES-K, all
possible combinations of input parameters are compared
to each other to find out optimal one, assuming the opti-
mal combination of explanatory variables is K-sparse. An
SVM is a supervised machine learning technique [21] and
has been used as a basic two-class classifier, which classi-
fies the discharges into non-disruptive or disruptive in the
present study. The boundary between the two classes is
given by linear SVM as f (x) = 0, where the decision func-
tion f (x) is as follows:

f (x) = wT x + b. (2)

The details of the ES-K-SVM are described in a previous
study [14].

In the present study, 14 plasma parameters are used
in the dataset (see Table 1). It is shown that the RWM is
suppressed by plasma rotation in DIII-D [22] and by rota-
tion at the q = 2 surface in JT-60U [23]. Therefore, four
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Table 1 Plasma parameters used in the machine learning model.

Range of training data
Name of parameters Expression Min. Max.
Plasma current [MA] Ip 0.70 1.01
Normalized beta βN 0.58 3.29
Plasma internal inductance li 0.80 1.26
Safety factor at 95% of poloidal flux q95 3.07 4.33
Plasma triangularity δ 0.28 0.46
Plasma elongation κ 1.30 1.49
Magnetic perturbation amplitude (n = 1) [mT] |Bn=1

r | 0.00 1.44
Ratio of electron density to the Greenwald density limit fGW = n̄e/nGW 0.31 1.66
Ratio of radiated power to total input power frad = Prad/Pinput 0 0.47
Speed of toroidal plasma rotation[×105 m/s] ∗ |Vt| 0.00 0.60
Direction of toroidal plasma rotation∗ ∗∗ exp (Vt/|Vt|) 1/e e
Ion temperature[keV] ∗ Ti 0.59 3.21
Radial location of q = 2 rational surface normalized by the minor
radius of plasma surface a

ρq=2/a 0.46 0.80

Magnetic shear∗ s 0.56 2.10

∗ For those parameters, values on rational surface where safety factor equal two, which is obtained by equilibrium
calculation assuming q = 1 at plasma center, are used.
∗∗ For taking logarithms of this parameter in training process, exponential of the value has been taken.

radial profile parameters at around the q = 2 rational sur-
face consist of |Vt|, Ti, ρq=2/a, and s, where q is the safety
factor, and are added to the parameters used in the previ-
ous study [14]. For these parameters, the volume-averaged
minor radius ρ is used as a radial index and the volume-
averaged minor radius ρ is calculated as follows,

ρ =

√
V(Ψ)
2π2R

. (3)

Here, V(Ψ) is plasma volume surrounded by magnetic sur-
face Ψ and R is the major radius. Ion temperature Ti at
the q = 2 rational surface is around 2 keV and is dis-
tributed from 0.59 keV to 3.21 keV. In order to take log-
arithms of the velocity of toroidal rotation Vt, Vt has been
separated into two parameters, that is, the speed of rotation
|Vt| and the direction of rotation Vt/|Vt|. Although there
are some data with a high (over 1) fGW value or high (over
1 mT) |Bn=1

r | value, those data will be ignored in the train-
ing of machine learning models and these discharges will
be judged as extraordinary discharges in the evaluation.

For each discharge, the data are taken every 5 ms
within 200 ms before the reference time. The reference
time is defined as the occurrence of current quench for
disruptive discharges, while it is selected randomly from
the range during which the plasma current is kept steady
for non-disruptive discharges. The data values have been
taken in logarithms and min-max normalization has been
applied before the dataset was used to train and test the
machine learning model. In the min-max normalization,
the range of data was scaled into [0,1] for each parameter.
By this preprocessing, the decision boundary between dis-

ruptive and non-disruptive classes obtained by the linear
SVM is turned into an exponential form like a power law,
which is frequently seen in nature. A model in the power
law would be more relevant to physical approach than the
simple linear combination.

2.3 Result of feature extraction
In order to assess the predictor model, two different

evaluation values called prediction success rate (PSR) and
false alarm rate (FAR) have been calculated for each com-
bination. PSR is the ratio of the number of shots correctly
judged as disruptive by the specific time of interest to the
total number of disruptive shots. On the other hand, FAR
is the ratio of the number of shots incorrectly judged as
disruptive by the specific time of interest to the total num-
ber of non-disruptive shots. When the predictor shows the
ideal performance, PS R = 100% and FAR = 0%. There-
fore, the distance from the ideal performance is defined as
follows.

distance ≡
√

(100 − PSR)2 + FAR2. (4)

In ES-K, the distance decreases from the beginning of
the increase in K. Then, the reduction of the distance is
saturated around K = 5. Figure 2 shows the result of ES-6-
SVM at 30 ms before the reference time. Figure 2 (a) is re-
ferred to as a 2D density of state (2D-DoS) diagram, which
is a two-dimensional (2D) histogram with PSR as the ver-
tical axis and FAR as the horizontal axis. The color of each
square corresponds to the number of combinations within
the square. Figure 2 (b) shows the parameters included in
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Fig. 2 (a) 2D-DoS diagram and (b) corresponding weight diagram of ES-6-SVM at 30 ms before disruption occurs.

the top 10 combinations in Fig. 2 (a) and is referred to as
a weight diagram. The color of each square in the weight
diagram represents the averaged weight w of the obtained
decision function (shown in Eq. (2)), whose absolute value
is basically paraphrased as the importance of each param-
eter in each combination.

According to Fig. 2, a combination of four parame-
ters, that is, βN, κ, Ti, and s, is dominant in the in the
top 10 combinations. This means these parameters are
the key parameters to predict disruption and it is implied
that these parameters could characterize the condition of
disruption. Distributions of these four parameters in dis-
ruptive and non-disruptive discharges are shown in Fig. 3.
While the distribution βN could be a relevant parameter
to separate non-disruptive and disruptive discharges, other
distributions are not well separated into two classes. Even
for βN, overlap of two classes implies that involvement of
hidden parameters is the key for reliable prediction of dis-
ruption.

In the previously performed study [14], |Bn=1
r | and its

time derivative seemed to be the most important parameter
in disruption prediction, because it was the parameter most
frequently included in the superior combinations and the
performance of the predictor seemed to depend on whether
it is included or not in the combination. However, |Bn=1

r |
did not appear as the commonly included parameter in the
present result. In the technical aspect, this different result
was caused by the reconstruction of the dataset. More non-
disruptive discharges with relatively large mode lock am-
plitude (|Bn=1

r | > 0.5 mT) are included in the dataset used
in the present study compared to the previous study.

Using those four parameters, the equation of decision

Fig. 3 Histograms of the representative parameters, i.e., βN, κ,
Ti, and s. The plots show the data distributions in the
training time range in the non-disruptive (blue bars) and
disruptive (orange bars) discharges.

boundary between disruptive and non-disruptive classes is
obtained as fexp(x) = 1, where fexp is as follows:

fexp = exp (−19.1) β6.32
N κ

39.6T−2.48
i s−2.43. (5)

Note that the boundary equation shown in Section 2.2,
f (x) = 0, has been deformed into fexp(x) = 1 by taking
logarithms of the input data as preprocessing.

The decision function Eq. (5) indicates that the expo-
nent of κ is much larger than those of other extracted pa-
rameters. This is mainly because the range of κ in the
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dataset is much smaller than other extracted parameters.
By min-max normalization, the range of κ is expanded to
[0,1]. Therefore, the exponent of κ is amplified compared
with the case where the range of κ is reduced into the orig-
inal range.

Since the RWM is supposed to limit βN in the present
experiment, the plasma rotation to suppress the RWM
would be the key parameters. However, neither the direc-
tion nor speed of plasma rotation has been extracted by
the ES-K-SVM. In the present study, those local values at
the q = 2 rational surface have been used since the mode
structure of precursor oscillation is localized at the q = 2
rational surface. This mode is the energetic particle driven
wall mode (EWM), which is thought to be one cause of
RWM and lead to disruption in these experiments [19]. It
should be noted here that the position of the q = 2 ratio-
nal surface is provisionally evaluated by the equilibrium
analysis assuming q(ρ = 0) = 1 while direct measurement
of the poloidal magnetic field by the motional Stark effect
shows that q(ρ = 0) is larger than unity. Therefore, the
real location of the q = 2 surface would be located inside
this provisional estimate. However, it is pointed out that
the profiles of Vt and Ti are peaked and s increases mono-
tonically with the minor radius and local values used in the
present analysis change gradually in space. Since the am-
biguity of the location of q = 2 surface and accompanied
errors of local values are systematically in the same direc-
tion, even the present analysis would not lead to qualitative
misunderstanding. Precise quantitative assessment awaits
future experiment. Precise identification of the location of
the q = 2 surface leads to the detailed discussion about the
physical linkage between the local parameters such as |Vt|,
Ti, and s.

Fig. 4 (lower) The distribution of values of the decision function shown in Eq. (5) when each data in the dataset is input and (upper) the
percentage of disruptive data in each region of bars. The curve in the upper figure is a fitted curve of the percentage of disruptive
data. The function being expressed is also shown in the figure.

3. Disruption Likelihood
Using four extracted parameters, the characteristics of

high-beta disruption in JT-60U has been discussed in terms
of disruption likelihood. Note that the likelihood discussed
in the present study is different from the disruptivity, which
was discussed in previous studies about the operational
limit against disruptions [9, 10]. In Fig. 4, the distribution
of values of the decision function (Eq. (5)) in the dataset is
shown in the bottom panel. The blue and red bars represent
non-disruptive and disruptive cases, respectively, and both
histograms are normalized to make the sum of bars equal
one. The disruptive data are distributed mainly in f (x) > 1
region, while the non-disruptive data are distributed mainly
in f (x) < 1 region. Here, the value of f (x) corresponds to
the distance from the decision boundary between the dis-
ruptive and non-disruptive regions. In the upper panel of
Fig. 4, the percentage of disruptive data in each region of
bars is shown with its fitted curve by a sigmoid function.
The approximate function is expressed as follows,

yfit =
1

1 + exp
{
−4.02

(
log10 fexp(x) + 0.1319

)} . (6)

The value of yfit corresponds to the likelihood of disruption
occurrence when the condition of plasma is expressed by
x. This likelihood is the expansion of the binary classifier
to the predictor model with continuous value expression.
The identified expression of likelihood quantifies the prox-
imity to disruption, in other words, the risk of disruption.
The likelihood expressed by measurable parameters is pre-
requisite for development of the control system to avoid
disruption by means of multiple actuators [24].

In Fig. 5, the likelihood is expressed as a color contour
on the plane of βN and the term of other extracted parame-

1402073-5



Plasma and Fusion Research: Regular Articles Volume 16, 1402073 (2021)

Fig. 5 The contour plot of the likelihood of disruption against βN and the terms of other extracted parameters. The red crosses and blue
dots show data points from disruptive and non-disruptive discharges, respectively. Note the e in the label of vertical axis is Napier’s
constant.

Fig. 6 Typical discharge with disruption in the JT-60U plasma
experiment targeted in this research. The black crosses
in the top panel shows the disruption likelihood, which is
estimated within 200 ms before the current quench.

ters, that is, κ, Ti, and s along with Eq. (5). The likelihood
shows that the higher ion temperature and magnetic shear
can extend the βN region with low disruption likelihood.
Although this seems to go against the knowledge that the
high elongation raises βN, it should be pointed out that this
trend means that lower elongation could bring a safer high
βN discharge but not that lower elongation leads to higher
βN.

Figure 6 shows the typical discharge with disruption
in JT-60U and the disruption likelihood approaches unity
before the occurrence of disruption. The data points corre-
spond to the points calculated for the dataset.

4. Conclusion
In the present study, a disruption predictor model has

been developed based on the high-beta experiment in JT-
60U [19]. As key parameters of disruption prediction, four
parameters that βN, κ, Ti, and s were extracted using ES
and SVM. The disruption likelihood has been estimated as
a function of these four parameters in a power-law form.

In conclusion, the likelihood of disruption in high-β
discharges on JT-60U is quantified by the distance from the
decision boundary which is defined by the machine learn-
ing technique of sparse modeling (ES) and SVM. This
boundary is expressed in the power law scaling with the
limited number of parameters that are extracted according
to their importance.

The disruption likelihood could be a way to apply the
extracted features to predict and avoid disruption of toka-
mak plasma and also to give a hint to explore the underly-
ing physics of disruption. Therefore, further validation of
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the likelihood and extracted features using a dataset with
a broader range of parameters and comparative study of
different machines will be part of future works.
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