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Double Leap-Frog Method for Large-Time-Step Particle
Simulation to Keep Larmor Radius Small
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A modified leap-frog (LF) scheme is presented that keeps the correct Larmor radius even in case of a large
time step Δt compared to the cyclotron period Ω−1, ΩΔt � 1, for the particle simulation of a plasma in the strong
magnetic field. The Larmor radius simulated by the conventional LF method becomes very large for ΩΔt � 1,
and such a numerical condition has been avoided in general. If the LF method is applicable to such situations,
new particle simulation codes can be more easily developed for a wide area of plasma physics. By repeating the
LF steps doubly and adopting the averaged velocity to advance the particle position, the Larmor radius is kept
real independently of the ΩΔt value. Proper nature on the energy conservation, magnetic moment conservation
and drift-velocity realization is safely inherited from the LF method.
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In first-principle particle-based simulation codes for
plasma physics including cyclotron gyration effects, the
leap-frog (LF) method has been widely used to integrate
equations of motion of an individual numerical particle [1];

u(t + Δt/2) − u(t − Δt/2)

= (q/m)[E(t) + u0 × B(t)]Δt, (1)

X(t + Δt) − X(t) = u(t + Δt/2)Δt, (2)

where u0 = [u(t + Δt/2) + u(t − Δt/2)]/2. Variables are
the velocity u, position X, electric charge q, mass m, time
t, and the time step Δt. The velocity and position are set
differently each other with half-time-step separation. The
electric field E(t) and magnetic field B(t) in Eq. (1) are
chosen at the particle position X(t). One of notable mer-
its of the LF method is to assure the energy conservation;
u2(t + Δt/2) − u2(t − Δt/2) = (2qΔt/m)E(t) · u0. Due to
the finiteness of Δt, the simulated cyclotron frequency ΩLF

becomes smaller than real one, Ω = qB/m, and the Larmor
radius ρLF is larger than real one, ρ = v⊥/Ω (v⊥ is the speed
perpendicular to B);

ΩLFΔt = 2 tan−1(ΩΔt/2),

ρLF = ρ/ cos(ΩLFΔt/2).
(3)

For ΩΔt < 1, the relative errors are ΩLF/Ω − 1 =

−(ΩΔt)2/12 and ρLF/ρ − 1 = (ΩΔt)2/8. Note that the re-
lation “ρLF = v⊥/ΩLF” does not hold. When ΩΔt → ∞,
ΩLF and ρLF converge to π/Δt and v⊥Δt/2, respectively.
The perpendicular velocity is inversely changed every step,
u⊥(t+Δt/2) = −u⊥(t−Δt/2). Here we consider the absolute
value of Ω for simplicity.
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In order to correct the gyro-phase delay, the Boris al-
gorithm has been adopted [2, 3]. Removing the E effect,
Eq. (1) of an implicit form is modified to an explicit form;
u+Δt/2−u−Δt/2 = (u−Δt/2+u−Δt/2×b∗)×2b∗/(1+b2

∗), where
b∗ = (B/B) tan(ΩΔt/2), u−Δt/2 = u−Δt/2 + (qΔt/2m)E(t)
and u+Δt/2 = u+Δt/2 + (qΔt/2m)E(t). Hereafter, we re-
place u(t ± Δt/2) with u±Δt/2. The simulated cyclotron
frequency is just the real frequency. In spite of the cor-
rect Ω, the Larmor radius is affected by the finite Δt as
ρBoris = ρ × |(ΩΔt/2)/ sin(ΩΔt/2)|. When ΩΔt < 1, the
relative error, ρBoris/ρ − 1 = (ΩΔt)2/24, is smaller than
that of LF method. On the other hand, when ΩΔt � 1,
the radius is varied bizarrely; ρBoris = v⊥Δt/2 is similar to
ρLF at ΩΔt = (2l + 1)π, but it becomes infinitely large at
ΩΔt = 2lπ (l is an integer).

Of course particle simulations with gyration motions
have generally been carried out under the condition of
ΩΔt � 1. In an electrostatic particle-in-cell (PIC) sim-
ulation code for the edge plasma in the strong magnetic
field (ΩeΔt � 1 > ΩiΔt), called PARASOL [4], the ion
motion including gyration is solved by the LF method,
while the motion of electron guiding center is solved by the
predictor-corrector method. If the LF method is applicable
to the large-time-step particle simulation of ΩΔt � 1, new
particle simulation codes can be more easily developed and
simulation studies (longer time scale with the larger time
step) can be promoted for a wide area of plasma physics.

First, we examine to which extent the LF method cor-
rectly simulates the charged particle motion in electric and
magnetic fields when ΩΔt � 1. As described above, ΩLF

and ρLF converge to π/Δt � Ω and v⊥Δt/2 � ρ, respec-
tively. On the other hand, (i) the energy conservation
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is assured, and (ii) the magnetic moment, μ = mv2⊥/2B,
is kept constant within the relative error ∼ O(ρLF/LB) or
O(1/ΩLFτB). Therefore, (iii) the mirror force parallel to
B is realized, FM = −μ∇||B. Here the characteristic
length LB is of the spatial variation of B, and the char-
acteristic time τB is of its temporal variation. This fa-
vorable property is based on a moment M = mρLF|v0⊥|
calculated from the r.h.s. of Eq. (1) being fully indepen-
dent of ΩΔt, M = mρLFv⊥ cos(ΩLFΔt/2) = mρv⊥. As
for the drift perpendicular to B, (iv) the E × B drift,
VE×B = (E × B)/B2, is correctly simulated, and (v) the
polarization drift, Vpolar = (dE/dt)/BΩ, as well. Although
ρLF ≈ v⊥Δt/2 � ρ for ΩΔt � 1, (vi) the curvature-∇B
drift, V∇B = (2v2|| + v

2⊥)(B × ∇B)/2B2Ω, can be simulated
without worry (v|| is the speed parallel to B).

The enlarged Larmor radius is a fatal demerit of the
LF method if applied to ΩΔt � 1. Strangely, the elec-
tron Larmor radius, ρe,LF ∼ veΔt/2, becomes larger than
that of deuterium ion, ρi,LF ∼ vi/Ωi, when 1 > ΩiΔt >
2vi/ve ∼ 1/30 (ve and vi are the thermal speed of electron
and ion). Resultantly, the classical diffusion perpendicu-
lar to B, D⊥ ≈ ρ2

e/τe (τe is the electron collision time),
becomes abnormally larger by (ΩeΔt)2.

In order to keep the simulated Larmor radius small
independently of the ΩΔt value, we propose a new scheme
based on the LF method. The usual LF steps are repeated
doubly as described below. We call this scheme, therefore,
“double leap-frog (DLF)” method.

u+Δt/2 − u−Δt/2 = (q/m)[E′ + u0 × B′]Δt, (4)

X#(t + Δt) − X′(t) = u+Δt/2Δt, (5)

u#+3Δt/2 − u+Δt/2 = (q/m)[E# + u1 × B#]Δt, (6)

X(t + Δt) − X(t) = w+Δt/2Δt, (7)

w+Δt/2 = (α/2)(u#+3Δt/2 + u−Δt/2) + (1 − α)u+Δt/2, (8)

X′(t + Δt) − X(t + Δt) = (α/2)(u+Δt/2 − u#+3Δt/2)Δt,

(9)

where u1 = (u#
+3Δt/2 + u+Δt/2)/2. The virtual position X′ (or

X#) moves along an enlarged gyration orbit with ρLF. To
keep the real Larmor radius ρ, we use an averaged velocity
w+Δt/2 to advance X in Eq. (7) with a coefficient α = [2 +
2 cos(ΩLFΔt/2)]−1. A simple reduction of the perpendic-
ular movement, dX⊥ = u⊥,+Δt/2Δt × cos(ΩLFΔt/2), cannot
be applied because the E × B drift is also reduced. The gy-
ration frequency ΩLF is not corrected as it is, and the phase
relation is the same as that of LF method; X⊥ ∼ exp(iΩLFt)
and u⊥ ∼ i exp(iΩLFt). The virtual position X′(t + Δt) is
reset in accordance with Eq. (9), so that its guiding cen-
ter is not separating from that of X orbit. Using this
Eq. (9), the initial value of X′(0) is determined from X(0)
and u(−Δt/2); X′(0) − X(0) = (α/2) (u−Δt/2 − u#)Δt with
u#−u−Δt/2 = (q/m) [E(X(0))+ (u#+u−Δt/2)/2×B(X(0))]Δt.
Tentative variables X# and u# do not continue to the next
time-step calculation. Collisional change in u+Δt/2 [5] then
can be given after the above DLF process. Gyration or-

Fig. 1 Gyration orbit of X with correct Larmor radius ρ for
ΩΔt = 2.5. Velocity u, averaged velocity w, virtual or-
bit X′ (or X#) with larger ρLF = 1.60ρ and resetting of
X′(Δt) are schematically shown.

bits of X (solid line) and X′ (dashed line) are schemati-
cally shown in Fig. 1 for ΩΔt = 2.5 (ΩLFΔt = 1.79 and
ρLF = 1.60ρ).

Electric and magnetic fields in Eqs. (4) and (6) are
chosen at the virtual position; E′ - B′ at X′(t) and E# - B#

at X#(t + Δt). By this setting, proper nature on the mag-
netic moment conservation and drift-velocity realization
is safely inherited from the LF method. The electrostatic
component Es = −∇φ (φ is the potential) could be chosen
at the real position X(t). Since X(t + Δt) is still not de-
termined before Eq. (6), how to self-consistently treat E#

and B# is the future problem. The flux parallel to B is cal-
culated at the real position, while the perpendicular flux
including diamagnetic flow is calculated at the virtual po-
sition; nV = Σj{S(X − Xj)u0|| + S(X − X′j )u0⊥}, where S is
a shape function in a PIC simulation (j is the particle tag).
Note that the diamagnetic flow cannot directly be obtained
in the guiding-center system.

The DLF method for long temporal-scale particle sim-
ulation becomes more powerful when coupled with the in-
genious model [6,7] for large spatial-scale simulation. The
DLF algorithm will be tested during our development of
the PIXY code (ΩeΔt � 1 > ΩiΔt) [8] in the near fu-
ture. The possibility of using this new modeling in ki-
netic simulations instead of using the gyrokinetic approach
(ΩiΔt � 1) [9] will be examined in future studies.
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