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High-Speed Analysis of Heating and Current Drive with Neutral
Beam Injection in Tokamak Plasma∗)
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We developed a Fokker-Planck solver to analyze heating and current drive with neutral beam injection in
tokamak plasma and introduced it into the integral transport code TOTAL. In the developed solver, the fast ion
distribution function is expanded in the eigenfunctions of the collisional pitch angle scattering operator. The time
evolution of the distribution function is obtained by solving 1-D partial differential equations for velocity, so that
high-speed analysis is possible. In the analyses using the point source and assuming zero toroidal drift, the results
of the heating power and the driven current evaluated in steady state agreed well with the results calculated by
the OFMC code and the ACCOME code. We demonstrated that the TOTAL code implemented with the solver is
able to simulate a DEMO operation scenario with neutral-beam injection.
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1. Introduction
In Japan, DEMO designs are progressing to realize fu-

sion reactors by 2050 s. In development of the design it
is needed to determine actuator specifications, so that we
have to consider many operation scenarios (e.g. keeping
rating fusion power and keeping full non-inductive cur-
rent drive) using various actuator parameters (e.g. maxi-
mum supply fuel speed and maximum neutral beam power)
with a low-computational-cost integrated transport code.
The TOTAL code [1] is a 1-D transport and 2-D equi-
librium calculation code, where the various physical pro-
cesses (e.g. sawtooth oscillation) are described by simple
models. The TOTAL code is thus suitable for the low-
computational-cost simulation. In addition, the TOTAL
code is able to simulate operation keeping rating fusion
power with feed-back control of fueling rate. However,
the TOTAL code was only possible to give fixed radial
profiles for heating power and driven current. So, a low-
computational-cost solver is needed to analyze the time
evolution of the external heating and current drive with ac-
tuators.

In this study, we developed a low-computational-cost
Fokker-Planck solver (FP solver) for the distribution func-
tions of fast ions generated by Neutral Beam (NB) injec-
tion and introduced the developed solver into the TOTAL
code to analyze the NB heating and current drive. Among
the codes to solve Fokker Planck equation developed so
far, there are the BAFP code [2] in the TOPICS [3] code
and RISK [4]. In the BAFP code the Fokker Planck equa-
tion is solved as the 2-D partial differential equation of
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the velocity and pitch angle parameters. In the developed
solver, the fast ion distribution function is expanded in the
eigenfunctions of the pitch angle operator in order to re-
duce the calculation time because the eigenfunctions are
decided by the MHD equilibrium only and the time devel-
opment is described by 1-D partial differential equations
for the velocity. In RISK, the eigenfunctions are calculated
assuming circular cross-sections of flux surfaces; in con-
trast we calculate the eigenfunctions for accurate shapes of
flux surfaces. The developed solver is based on that in the
ACCOME code [5], which analyzes NB current drive in
steady state. The distribution function of fast ions in toka-
mak is analyzed by solving the bounce averaged Fokker-
Planck equation on a magnetic surface using the finite dif-
ference method for velocity and eigenfunctions expansion
in the pitch angle parameter.

In this article, first, we describe the bounce averaged
Fokker-Planck equation used in the solver in section 2.
Secondly, we describe the equations to evaluate NB-driven
current and heating power to bulk ions and electrons from
the distribution function in section 3. Next, we show the
verification of the solver on driven current and heating
power with an orbit following code OFMC [6] and the AC-
COME code in section 4. In section 5, we describe the
flow chart of the TOTAL code implemented with the de-
veloped solver and show a simulation of DEMO operation
scenario with neutral-beam injection. Finally, we conclude
this study in Section 6.

2. Bounce Averaged Fokker-Planck
Equation
In order to derive the bounce averaged Fokker-Planck
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equation for fast ions generated with NB injection in a
tokamak plasma, we start from the gyro-averaged Fokker-
Planck equation [7]

∂ f
∂t
+ vg · ∇ f =

∑
j Cbj( f ) + S − L( f ), (1)

where f is the distribution function, f = f (t, v, μ, ψ, θ);
here v is the fast ion velocity, μ is the magnetic moment
μ = (mv2⊥)/2B, v⊥ is the velocity component perpendicular
to the magnetic field, B is the magnitude of magnetic field
at poloidal position θ on the magnetic surface labeled by
the poloidal flux function ψ; vg is the guiding center veloc-
ity; Cbi( f ) is the collision operator between particle species
j and fast ions; S is the fast ion source term caused by ion-
ization of injected NB particles; L is the loss term. In this
study, we do not consider the loss of fast ions including
orbit loss and charge-exchange loss during slowing-down
and then do not employ the loss term; the thermalized ions
are removed through the lower boundary of the velocity
space.

Here, we define the local pitch angle parameter η as

η2 =
v2
‖

v2
= 1 − 2B

mv2
μ = 1 − (1 − ξ2)B

Bmin
, (2)

where, v‖ is the parallel velocity component and Bmin is the
minimum magnitude of field on the magnetic surface. ξ

is the value of η at a point where B = Bmin on the mag-
netic surface. So, we can use ξ as an independent variable
instead of μ; f = f (t, v, ψ, ξ, θ).

Now, we make two assumptions for simplifying the
equation as done in [5]: we assume (i) that fast ions are in
the banana regime and (ii) that the toroidal drift of fast ions
can be neglected so that fast ions follow the magnetic field
line. Assumption (ii) means vg = v‖. Assumption (i) means
that each ion can complete many nearly identical orbits in
the poloidal plane before its orbit is significantly perturbed
by collisions. In result of assumptions (i) and (ii), we can
neglect θ dependence of f namely f = f0(t, v, ψ, ξ), where
f0 means the zeroth order distribution function in τB/τC;
τB means the bounce time and τC means the collision time.
Namely f is independent of the poloidal position in the
orbit. So, we neglect the term about vg of eq. (1).

The bounce time τB that each fast ion completes its
orbit in the poloidal plane is definedas

τB =

∮
dl
v‖
=

∮
dlp
vp
=

∮
Bdlp
v‖Bp

=
1
v

∮
Bdlp
ηBp

. (3)

Here dl is the line element along the field line, dlp is the
line element along the poloidal direction on the magnetic
surface, vp is the velocity of the guiding center along dlp,
and Bp is the magnitude of the poloidal field. The contour
integral

∮
is taken for a path completing the particle orbit

in the poloidal direction in this article. We define a bounce-
average operator as

〈X〉B =
∮

Xdl
τBv‖

=

∮
Xdlp
τBvp

=

∮
XBdlp
τBv‖Bp

=
1

vτB

∮
XBdlp
ηBp

. (4)

We use the bounce-average operator for the gyro-averaged
Fokker-Planck equation for f0, then

∂ f0
∂t
=

∑
j
〈Cbj( f0)〉B + 〈S 〉B. (5)

Now, we assume that fast ions collide only with
isotropic Maxwellian bulk electrons and ions. Then Cbj

is given in the following form [8]

Cbj = Dη,j(v)
∂

∂η

[
(1 − η2)

∂ f0
∂η

]
+

1
v2

∂

∂v
(Av,j(v) f0)

+
1
v2

∂

∂v

(
v2Bv,j(v)

∂ f0
∂v

)
, (6)

where

Av,j =
1
τs

3
√
π

4
me

mb
v3

th,e

⎛⎜⎜⎜⎜⎜⎝mb

mj

lnΛjZ2
j nj

lnΛene
G

(
v

vth,j

)⎞⎟⎟⎟⎟⎟⎠ ,
Bv,j =

1
τs

3
√
π

4
me

m2
b

Tj

v3
v3

th,e

⎛⎜⎜⎜⎜⎜⎝mb

mj

lnΛjZ2
j nj

lnΛene
G

(
v

vth,j

)⎞⎟⎟⎟⎟⎟⎠ ,
and

Dη,j =
1
τS

3
√
π

8
me

m2
b

Tj

v5
v3

th,e

⎛⎜⎜⎜⎜⎜⎝mb

mj

lnΛjZ2
j nj

lnΛene
F

(
v

vth,j

)⎞⎟⎟⎟⎟⎟⎠ .
(7)

Here, n is the density, T is the temperature, m is the mass, Z
is the charge number and lnΛ is the Coulomb logarithm for
collisions between fast ions and bulk particles, subscript j
denotes particle species (j = e for bulk electron, i for bulk
ion), and subscript b means fast ion. Av,j, Bv,j and Dη,j are
the friction, diffusion and scattering coefficients. The ther-
mal velocity vth, the critical velocity vc the slowing down
time τs, the function G(x) and the function F(x) are given
in the following forms:

vth,j =

√
2Tj

mj
,

τs =
4πε2

0m2
bv3

c

e4Z2
bZ1ne lnΛe

≈ mb

mp

2(Te [keV])1.5

lnΛeZ2
bne [1019 m−3]

,

vc =

(
3
√
π

4
meZ1

mb

)1/3

vth,e,

Z1 =
∑

j=i1,i2,...

mb

mj

lnΛjZ2
j nj

lnΛjne
=

4

3
√
π

mbv3
c

mev3
th,e

,

G(x) = erf(x) − x
∂ erf(x)
∂x

,

F(x) = (2x2 − 1) erf(x) + x
∂ erf(x)
∂x

, (8)

where mp is the proton mass, ε0 is the dielectric constant
of free space and erf(x) is the error function. If we use an
approximate of vth,i � v � vth,e, we can describe eq. (7) as
following forms:
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for electrons (j = e),

Av,e =
v3

τs
,

Bv,e =
Te

mbτs
,

and

Dη,e = 0,

for ions (j = i1, i2, . . .),

∑
j=i1,i2,...

Av,j =
v3

c

τs
,

∑
j=i1,i2,...

Bv,j =
Tiv3

c

mbτsv3
,

and ∑
j=i1,i2,...

Dη,j =
v3

c

2v3τs

Zeff

Z1
. (9)

Note that in a low velocity range, v ∼ vth,i, the assump-
tion vth,i � v � vth,e is not satisfied and then the distribu-
tion function obtained using the coefficients shown above
would be inaccurate. However, this would have only small
effects on the fast ion current since the contribution of low
velocity ions to fast ion current is small.

In eq. (5), the bounce-averaged collision operator is
given in following form by using eq. (2);

〈Cbj〉B =
BminDη,j(v)

vτBξ

∂

∂ξ

[
(1 − ξ2)

ξ

∮
η

dlp
Bp

∂ f0
∂ξ

]

+
1
v2

∂

∂v
(Ar,j(v) f0) +

1
v2

∂

∂v

(
v2Bv,j(v)

∂ f0
∂v

)
.

(10)

By using eigenfunctions Cn for the first term in the
right-hand side of eq. (10), such that

BminDη,j(v)

vτBξ

∂

∂ξ

[
(1 − ξ2)

ξ

∮
η

dlp
Bp

dCn

dξ

]
+ λnCn

= 0, (11)

we expand f0 with Cn as f0(t, v, ψ, ξ) = Σn max
n=0 an(t, v, ψ)

Cn(ξ, ψ) in eq. (5) and then have following equations for
an:

∂an

∂t
=

1
v2

∂

∂v
(Avan) +

1
v2

∂

∂v

(
v2Bv(v)

∂an

∂v

)
−Dηλnan + S n, (12)

where

S n =

∫
Cn〈S 〉Bdξ∫

C2
ndξ

. (13)

The eigenfunctions Cn are odd (even) functions of ξ
for odd (even) n [9]. Since the fast ion current is not re-
lated to Cn for even n, we obtain Cn and λn for only odd
n in this study. C0 and λ0 are used to obtain a0 which is
related to the fast ion density and the heating power, but

they are constant, C0 = 1 and λ0 = 1/2 and we do not need
to calculate them. The Cn for odd n is zero for trapped par-
ticles [9], namely for |ξ| ≤ ξt. Here ξt is the absolute value
of the boundary in ξ between passing and trapped particles
and is given by

ξt =
√

1 − Bmin/Bmax, (14)

where Bmax is the maximum value of magnetic field on the
magnetic surface. On the other hand, for passing particles,
the bounce average can be replaced with the magnetic sur-
face average defined by

〈X〉M =
∮

Xdlp
Bp

/ ∮
dlp
Bp
. (15)

Using eq. (15) in eq. (11), we have

Bmin

ξ〈B/η〉M
d
dξ

{
(1 − ξ2)

〈η〉M
ξ

dCn

dξ

}
+ λnCn

= 0, (16)

in ξt ≤ |ξ| ≤ 1, where 〈η〉M and 〈B/η〉M are calculated by
numerical integration along the field line or the magnetic
surface in general. For the magnetic surfaces with circular
cross section and the large aspect ratio, they are approx-
imated by the complete elliptic integrals [10], which are
used in the RISK code [4]. The eigenfunctions Cn for odd
n are obtained by assuming the following forms

Cn =

{∑
1≤odd i≤n En,i(ξ − ξt)i (ξt < |ξ| ≤ 1)

0 (|ξ| ≤ ξt)
, (17)

and calculating the coefficients En,i and the eigen values
λn. We can calculate the terms in eq. (16) and then Cn if
the MHD equilibrium is decided.

The time evolution of an(t, v, ψ) is calculated by solv-
ing eq. (12) with the finite difference method. In this study,
we used the Crank-Nicolson method.

3. NB Current Drive and Heating
We evaluate the NB-driven current density, the heating

power to bulk ions Pi and that to electron Pe from f0.
First, we evaluate the NB-driven current density jNB.

For the MHD equilibrium calculation in the TOTAL code
〈 j · B〉M is used as the physical quantity related to plasma
current density j. Correspondingly, we evaluate 〈 jNB ·B〉M
here. To evaluate 〈 jNB · B〉M, we need to consider the fast
ion current jfast calculated from f0 and the electron cur-
rent caused by electrons dragged by the fast ion flow. In
this study, we use the coefficient celec to reflect the electron
current effect given by the Mikkelsen model [11]. By using
celec, 〈 jNB · B〉M is given by the following equation [5]

〈 jNB · B〉M = Celec〈 jfast · B〉M
= CelecZbe

∫
f0(v, ξ)〈ηB〉Bv dV,

dV = 2πv2dvdξ, (18)
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where, e is the elementary charge. Note that the above
expression implies that f0 is regarded as the volume av-
eraged distribution function, not the distribution function
calculated from eq. (5). Correspondingly, we calculate the
source term in the RHS of eq. (5) by volume averaging,
not bounce averaging. It is considered that the errors due
to this approximation are not large for the present pur-
pose where only the passing particles are taken into ac-
count. This treatment is used in the ACCOME code and
the results of NB current drive agreed with an experiment
data [12].

Next, we evaluate the NB heating power. The heating
power to bulk j particles Pj are given by

Pj = −
∫

1
2

mbv2〈Cbj〉BdV. (19)

In calculating integrals in eqs. (18) and (19), we use the
trapezoid integration for v and the Gauss-Legendre inte-
gration for ξ.

4. Verification of the FP Solver
To confirm the accuracy of the developed FP solver,

we compared it with the OFMC code and the ACCOME
code. In the analysis, we assumed a tokamak plasma
which has a circular cross section with the major radius
R = 8.5 m, the minor radius a = 2.42 m and the aspect
ratio A = 3.5. as shown in Fig. 1. As the source term,
we used a point source with the power Pinj = 10 kW. The
point source means a source of fast ions with a given ve-
locity and a given pitch angle parameter ξ on a given flux
surface. Under the condition vth,i � v � vth,e, we used
coefficients in eq. (9) for Cbj. We used 500 meshes in v
with v = 1.33vinj at the upper boundary and used time step
Δt = 10−3τs, where vinj is the initial velocity of the fast
ions.

First, we compared the FP solver and the OFMC code
for the heating power to electrons and ions Pe, Pi. The
comparison was done at the five points in the density and

Fig. 1 Magnetic surfaces (ψ = 0, 0.1, . . ., 1) projected on the
poloidal plane where ψ means the normalized poloidal
flux function.

the temperature radial profiles shown in Fig. 2. These pro-
files were decided assuming those in future DEMO. The
toroidal drift was assumed to be zero in OFMC for com-
parison, so that the test particle moves completely along
the magnetic field. We used Eb = 0.5, 1.0, 1.5 MeV where
Eb means the initial energy of fast ions. The results are
shown in Fig. 3.

The results of Pe approximately matched. The OFMC
code and the FP solver did not agree in Pi, but Pi + Pth of
the OFMC code and Pi of the FP solver agreed well, where
Pth is the thermalized ions power calculated by the OFMC
code. This is because the fast ions are removed when its
velocity reached the thermal velocity level in the OFMC
code, while the fast ions are continuously deaccelerated to

Fig. 2 Radial profile of ne (left) and Te,i (right). Red symbols
denote the positions for comparison.

Fig. 3 Radial profiles of Pi (left) and Pe (right). Pi + Pth means
total power transferred to bulk ions from fast ions in
OFMC.

Fig. 4 Profiles of v2a0 at ψ = 0.01. The black dashed line means
v = vth,i.
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Fig. 5 ε dependence of 〈Ifast
tor 〉S where ε is the inverse aspect ra-

tio; ε = minor radius/major radius.

v = 0 transferring its energy to the bulk plasma ions us-
ing coefficients given by eq. (9) before they are removed in
the FP solver. Figure 4 shows profiles of v2a0(v) which is
the distribution of magnitude of fast ion velocity obtained
by the FP solver. The fast ions are not continuously accu-
mulated at v = vth,i but the profile reaches a steady state.
Thus, we have confirmed that the FP solver can provide the
approximately accurate power transferred to ions and that
to electrons, which are needed to solve energy transport
equations for ions and electrons in the TOTAL code.

Next, the results of comparing the ACCOME code and
the FP solver on the fast ion current are shown in Fig. 5 in
the conditions of ne = 5 × 1019 m−3, Te,i = 5 keV. Here,
〈Ifast

tor 〉S means the fast ion toroidal current averaged along
the contour of the flux in the poloidal plane and is de-
scribed by

〈Ifast
tor 〉S(ψ) = F(ψ)〈 jfast

‖ B〉M, (20)

where F(ψ) is decided by the magnetic surface shape. The
same formula is used for F(ψ) in the ACCOME code and
in the FP solver. We used point sources with ξ = 1.0,
0.9, 0.8, 0.7 and energy of Eb = 1.0 MeV. All results of
the FP solver agreed well with the ACCOME code. This is
because the ACCOME code also uses coefficients given by
eq. (9). We found that the time needed to reach the steady
state is about 2 s in the calculation at the magnetic axis.
This value almost agreed with the estimated time 2.1 s from
an expression, (τs ln(vinj/vc + 1))/3 given by Gaffey [13].

5. Introduction into the TOTAL Code
The FP solver was introduced into the TOTAL code

together with a deposition code. The deposition code is
a Monte Carlo code to analyze the spatial distribution of
fast ions generated from injected NB through ionization
or charge-exchange reactions. It was developed based on
that used in the ACCOME code [5]. We get the volume
averaged source term 〈S 〉v(v, ξ, ψ) summing up the point
sources on the magnetic surface obtained by the deposition
code. The stopping cross section to decide an ionization
position of a test particle is given by the numerical fit by S.
Suzuki et al. [14]. By coupling the FP solver and the depo-

Fig. 6 Outline of TOTAL code implemented with the FP solver.
nj, Tj, Ip and Δt means density, temperature of particle j,
the plasma current and the time interval.

sition code, it became able to evaluate NB heating power
and driven current with the TOTAL code. We show the
flow chart of the TOTAL code in Fig. 6. The TOTAL code
is a 1-D particle and energy transport, 1-D current diffu-
sion and 2-D equilibrium calculation code. The NB-driven
current, the heating power and the thermalized ion number
calculated by the FP solver are used as the source terms of
the corresponding equations. We define the number of the
thermalized ions per unit time ∂Nslow/∂t by subtracting the
change rate of the number of fast ions from the number of
particles provided by the source per unit time:

∂Nslow

∂t
=

∫
S dV − ∂Nb

∂t
, (21)

where

∂Nb

∂t
=

∫
∂ f0
∂t

dV. (22)

We show an example of a tokamak plasma operation
scenario using NB injection, which was calculated with the
TOTAL code. In the example, we used pellet injection for
fueling, RF injection for heating and NB injection for cur-
rent drive and heating. The heating power profile by RF
was given by a fixed function, while the RF power PRF

was adjusted to keep the fusion power Pfus = 1.46 GW.
The pellet injection rate was adjusted to keep the line av-
eraged electron density ne = 1.2nGW = 8.02 × 1019 m−3,
where nGW is the Greenwald density. The MHD equilib-
rium was determined to satisfy the major radius 8.5 m, the
minor radius 2.42 m, and the elongation 1.65, without an X
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Fig. 7 Magnetic surfaces and injected NB lines projected on the
poloidal plane. The red line denotes the magnetic sur-
faces in the TOTAL code. The green and yellow areas
denote NB lines for on-axis and off-axis injection, re-
spectively, where the height indicates the cross-sectional
diameter 2aB.

point. We assumed two NB units; one is an on-axis injec-
tion and the other is an off-axis injection. The deuterium
atoms with 1 MeV are tangentially injected parallel to the
equatorial plane as shown in Fig. 7. The beams had circular
cross sections with the radius aB = 0.75 m and the radial
profile of beam density is given by a Gaussian distribution
w, that is,

w(rB, θB) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1.582

πa2
B

exp

⎛⎜⎜⎜⎜⎜⎝−
(

rB

aB

)2⎞⎟⎟⎟⎟⎟⎠ (rB < aB)

0 (rB ≥ aB)
,

(23)∫ aB

0

∫ 2π

0
w(rB, θB)rBdrBdθB = 1, (24)

where rB, θB are polar coordinates on the cross section.
The NB axis of the on-axis unit reaches the major radius
position R = 8.5 m and the vertical position Z = 0 m, while
the NB axis of the off-axis unit reaches (R,Z) = (8.9 m,
0.8 m). Figure 7 shows the magnetic surfaces and injected
NB lines projected on the poloidal plane at t = 3000 s.

In the TOTAL code, diffusion of the induced current is
calculated to satisfy the given value of the total plasma cur-
rent. During t = 0 s to 3000 s, the plasma current was kept
at 12.3 MA by the induced current and the bootstrap cur-
rent. At t = 3000 s NB injection was started and continued
until the end of simulation, t = 8000 s, while the plasma
current was fixed at 12.3 MA. The total NB power, sum
of the on-axis NB power and the off-axis NB power, was
adjusted so that the sum of the NB driven current and the
bootstrap current became the total plasma current, namely
the induced current became zero. The ratio of the on-axis

Fig. 8 Time evolution of ne (left) and the particle sources (right).

Fig. 9 Time evolution of Pfus and the heating sources.

NB power and the off-axis NB power was adjusted so that
the safety factor q at ρ = 0.1 became 2.4. Here ρ is the
magnetic surface label defined by

ρ =
√
Φ/Φsurf , (25)

where Φ and Φsurf are the toroidal flux enclosed by the
magnetic surface and the plasma surface, respectively.
Control of the safety factor near the plasma core is valid
to avoid the MHD instabilities. The results are shown in
Figs. 8, 9, 10 and 11.

Figures 8 and 9 show the time evolution of ne and
Pfus together with the corresponding sources. ne and Pfus

reached the target value shortly after the start of the calcu-
lation, and then followed the target value until the end of
the calculation. At t = 3000 s, the number of particles and
heating by NB injection increased and the density and the
fusion power increased transiently. The pellet supply and
RF heating power were then adjusted so that they returned
to respective target values.

Figure 10 (a) shows the time evolution of the NB
driven current, the bootstrap current, the induced current
and the plasma current. As the result of adjustment of
the power of NB units, the induced current quickly fol-
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Fig. 10 (a) Time evolution of currents and (b) radial profiles of
the induced current density.

Fig. 11 Time evolution of fON (left) and q(0.1) (right).

lowed the target value (= 0). However, since the rise of
the NB driven current was shorter than the characteristic
time of the current diffusion in the condition like DEMO,
the local induced current density did not become zero even
if the total induced current was controlled to be zero, as
shown in Fig. 10 (b). Note that the induced current contains
not only the current caused by ohmic coil but the current
by time variation of the NB driven current and the boot-
strap current. As a result of continuously adjusting the NB
power so that the total induced current became zero, the lo-
cal induced current density became zero everywhere in the
plasma at t = 8000 s. Figure 11 shows the time evolution of
fON and q (ρ = 0.1). Here, fON means the ratio of on-axis
NB power to the total NBs power. As the local induced
current density became zero, q (ρ = 0.1) approached the
target value (2.4).

From these results, it is shown that the actuator param-
eters necessary for controlling the ne, Pfus and current dis-
tribution can be evaluated and the operation scenario can
be studied by the TOTAL code.

6. Summary
We developed a bounce averaged Fokker-Planck

equation solver by eigenfunctions expansion and the finite

different method. In the solver the time dependent distri-
bution function for the fast ions generated by NB injection
is evaluated by using eigenfunctions decided by the MHD
equilibrium only and solving 1-D partial differential equa-
tions for velocity, so that the high-speed analysis is possi-
ble.

We evaluated the NB heating power and the driven
current from the distribution function. In steady state, the
results agreed with those obtained by the ACCOME and
the OFMC codes.

The developed solver was introduced into the TOTAL
code together with the NB deposition code used in AC-
COME. We simulated a DEMO operation scenario using
NB injection with the TOTAL code. From the results, it
was confirmed that DEMO operating scenarios can be ex-
amined and the NB parameters needed in the DEMO oper-
ation can be evaluated with the improved TOTAL code.

There are many effects not included in the developed
solver; for example, the finite orbit effect and the exact
thermalization loss effect. In future, we will add simple
algorithm to include these effects with high-speed analy-
sis. In addition, we will search best actuator parameters to
achieve full non-inductive current drive and rating fusion
power by several TOTAL code simulations.
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