
Plasma and Fusion Research: Regular Articles Volume 15, 2401053 (2020)

Loss of the Rarefaction Wave during Plasma Sheet Thinning∗)
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A one-dimensional model for plasma sheet thinning [J. K. Chao et al., Planet. Space Sci. 25, 703 (1977)]
according to the Current Disruption (CD) model of auroral breakup is extended to two dimensions. An initial
disturbance generates a rarefaction wave. In the 1D model the rarefaction wave propagates tailward at sound
velocity, which is regarded as a signature of the thinning. However, in the MHD simulation of the 2D model
the rarefaction wave is quickly lost in the plasma sheet recompression, while the thinning continues propagating
at a slower velocity. This shows that the dynamics of plasma sheet thinning may be dominated by sheet-lobe
interactions that are absent from the 1D model.
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1. Introduction
The mechanisms behind auroral breakup, a sudden in-

crease of auroral strength during the magnetospheric sub-
storm [1], are not yet entirely understood. While it is
known [2] that the three main events in this process are
a) magnetotail reconnection, b) cross tail current reduction
and c) auroral breakup, their exact order has not been con-
clusively determined. There are two main competing mod-
els, the Near-Earth Neutral Line (NENL) model [3] and the
Current Disruption (CD) model.

In the CD model [4], a current disruption instabil-
ity reduces the cross tail current, breaking the balance of
the near-Earth magnetotail plasma, which enters the high-
latitude atmosphere and causes the auroral breakup. The
magnetotail plasma loss induces a rarefaction wave in the
plasma sheet (Fig. 1). The tailward propagation of the rar-
efaction wave causes a reduction of plasma sheet thickness,
eventually leading to magnetotail reconnection.

Chao et al. [5] have approximated the initial distur-
bance that causes the rarefaction wave with an imagi-
nary piston on the near-Earth side of the plasma sheet;
earthward movement of the piston generates the rarefac-
tion wave. A simplified model of a piston-bounded 1D
gas tube was used to approximate the rarefaction wave in
the weakly magnetized neutral sheet plasma, and the re-
sult was extrapolated to the full plasma sheet. In this pa-
per, we extend the model to a 2D vertical cross-section of
the plasma sheet, including the north and south magnetic
lobes. This allows us to take into account the influence of
the strongly magnetized lobe plasma, as well as any dy-
namics that result from the interaction between sheet and
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Fig. 1 Stages of the Current Disruption model. (Image adapted
from Chao et al. [5].)

lobe plasmas.
We show that, although there is a small drop in pres-

sure, the rarefaction wave, which is supposed to be a signa-
ture of the CD model, is not noticeable. Furthermore, the
propagation velocity of the thinning front shows a strong
dependence on lobe conditions.

2. Simulation Setup
2.1 MHD equations

We use the normalized MHD equations in their for-
mulation as a system of conservation laws [6]. System of
conservation laws in 2D is

∂U
∂t
+
∂

∂x
F(U) +

∂

∂y
G(U) = 0, (1)

where U is a vector of conserved variables and F(U) and
G(U) are respectively fluxes in x and y directions. For the
ideal MHD system, the conserved variables are

U =
(
ρ, ρu, ρv, ρw, Bx, By, Bz, e

)T
, (2)
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where ρ is the density, u = (u, v,w) is the velocity vector,
B = (Bx, By, Bz) is the magnetic field vector, and e is the
total energy. Defining the total pressure ptotal = p+ 1

2 B ·B,
with plasma kinetic pressure p defined as

p = (γ − 1)

(
e − 1

2
ρu · u − 1

2
B · B

)
, (3)

where γ is the ratio of specific heats (taken to be 5/3), the
fluxes in (1) are

F(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρu
ρuu − BxBx + ptotal

ρvu − BxBy

ρwu − BxBz

0
Byu − Bxv
Bzu − Bxw
u(e + ptotal) − Bx(u · B)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

and G(U) the same with the x and y axes reversed.

2.2 Plasma sheet model
For the simulation, we take the relatively flat area of

the plasma sheet, where the magnetic field lines are ap-
proximately parallel (Fig. 2), and look at the x-y cross-
section.

In the neutral sheet is a weakly-magnetized, high-
density plasma, UR (where “R” stands for “Right”; UL,
“Left”, is the initial disturbance region and will be de-
scribed later). This plasma is sandwiched between the
magnetic lobes, with strongly-magnetized, antiparallel,
low-density plasmas, UU (northern lobe, “Up”) and UD

(southern lobe, “Down”).
The inner layer of the plasma sheet, Usheet = UR,L, was

assumed by Chao to have a profile described by Bsheet =

Fig. 2 Rough structure of the Earth’s magnetosphere, with the
simulated area marked.

B∞ tanh(y). However, testing has shown that the results
are almost identical if the plasma sheet contains uniform
plasma with no magnetic field. Since the latter is more
amenable to analysis, we use a uniform plasma sheet as
the initial condition for our simulations.

We assume that prior to the disturbance the plasma
sheet was in a steady-state configuration, in which case
sheet and lobes are separated by tangential discontinuities.
The Rankine-Hugoniot jump condition for a tangential dis-
continuity [7] is

[
ptotal

]
= 0, where [X] denotes the jump

in X when crossing the sheet-lobe boundary. With plasma
sheet magnetic field Bsheet = 0, and lobe magnetic field
pointing in the x direction, BU,D = Blobe = (±Bx, 0, 0), this
condition becomes

psheet = plobe +
1
2

B2
x,lobe. (5)

Defining the plasma beta as β = 2p/B2, we take the
first parameter to be the lobe beta βlobe. For the second
parameter, we define the kinetic temperature ratio τ,

τ =
Ti,sheet

Ti,lobe
=

psheet/ρsheet

plobe/ρlobe
, (6)

where the ion temperature Ti is defined through p =
nikBTi, ρ = nimp, where ni is the ion number density, kB

is the Boltzmann constant, and mp is the proton mass.
If we normalize the system so that psheet = 1.0,

ρsheet = 1.0, and the initial thickness of the plasma sheet
is hsheet = 1.0 (Table 1), the steady-state initial condition is
determined by the above two parameters, plasma beta βlobe

and temperature ratio τ. Finally, we also define the sound
velocity cs =

√
γp/ρ and the Alfvén velocity cA =

√
B2/ρ.

For the initial disturbance, the piston model used by
Chao is replaced with a simple earthward plasma flow

Fig. 3 Initial configuration of the simulated area of the plasma
sheet.

Table 1 Units are normalized with respect to the plasma sheet. The first row shows the relationship between physical units and nor-
malized units. The second and third rows show the realistic values for plasma sheet and magnetic lobe, obtained from satellite
measurements [7, 8].

time, length, velocity, density, pressure, mag. field,
t (s) l (km) u (km/s) ρ (kg/m3) p (nPa) B (nT)

1.0 normalized units 29.7 1.91 × 105 642 8.35 × 10−22 0.345 20.8
realistic, sheet – – – 8.35 × 10−22 0.345 10
realistic, lobe – – – 1.67 × 10−23 6.9 × 10−4 30
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which will induce the rarefaction wave. The flow is cre-
ated by assigning an initial velocity uinit = (uinit, 0, 0) to the
plasma UL on the Earth side of the plasma sheet (Fig. 3).
The uinit parameter, which indicates the strength of the
disturbance, becomes the third and final parameter of the
plasma sheet system.

2.3 Numerical scheme
Since the problem contains discontinuities and will

likely develop shocks, we need a robust scheme able to
handle them. Here we use the second-order ENO (Essen-
tially Non-Oscillatory) scheme with Lax-Friedrichs flux
splitting [9, 10], which has shown a good balance between
accuracy, computation speed, and complexity of imple-
mentation in preliminary testing.

As the ∇ · B = 0 condition is not explicitly enforced
in the MHD equations, the computation is likely to intro-
duce an error and the divergence becomes non-zero. This
error accumulates exponentially [11]. Therefore, after ev-
ery time step we conduct divergence cleaning by solving
the Poisson equation ∇2φ + ∇ · B = 0 with the SOR (Suc-
cessive Over-Relaxation) method, and calculating the cor-
rected magnetic field [6] with Bcorrected = B + ∇φ.

Finally, for time stepping we use the optimal third-
order TVD (Total Variation Diminishing) Runge-Kutta
method [12] with a variable time step Δt, calculated so that
the CFL number is lower than 0.1.

For the results presented here, the simulation box
length was Lx = 32.0, Ly = 6.0 units, with −16 ≤ x ≤ 16,
−3 ≤ y ≤ 3. Each unit is divided into 16 and 32 grid
points for a total of, respectively, (Nx,Ny) = (512, 96)
and (1024, 192) grid points. The boundary conditions are

Dirichlet at x = −16.0 (Earth) and x = 16.0 (tail), Neu-
mann at y = −3.0 (south) and y = 3.0 (north), except for
the magnetic field component perpendicular to the bound-
ary, which is calculated from ∇ · B = 0. To reduce numer-
ical artifacts, the discontinuities in the initial conditions
have been smeared over two additional grid points.

3. Simulations
In the original 1D model, the disturbance is generated

with a piston [5]. In our model, the disturbance is gener-
ated with an initial velocity, uinit; this is equivalent to the
piston model with piston velocity up = uinit/2. The equiv-
alence of the two models was confirmed with a numerical
simulation for initial velocity model, comparing it to the
exact solution of the piston model.

We next extend the model to two dimensions, adding
the north and south magnetic lobes, described with the τ
and βlobe parameters introduced earlier. A realistic value of
the lobe beta would be on the order of βlobe � 0.01 [13];
however, this is difficult to achieve in a simulation due
to the extremely low kinetic pressure in such a plasma.
Therefore, we limit ourselves to βlobe ≥ 0.2. In this ex-
tension, Kelvin-Helmholtz instability may arise due to the
velocity difference between sheet and lobe [14]. However,
we confirmed that it arises only for the weak magnetic field
(Bx,lobe � 0.5, βlobe � 7), and that its effect is limited to the
far left of the simulation domain (x � −3). Thus it does
not affect the following discussions.

An example simulation result is shown in Fig. 4. At
time t = 0, the left half of the plasma sheet (x < 0,
−0.5 < y < 0.5) begins moving earthward. The pres-
sure drop that the disturbance leaves behind pulls in the

Fig. 4 Example results for a 2D plasma sheet simulation for parameters τ = 2.0, βlobe = 0.2, uinit = −1.0. (a), (b), and (c) show the
time evolution of pressure. We can observe the initial pressure drop and the beginning of thinning and recompression, followed by
propagation of plasma sheet thinning. (d) shows the comparison of pressure at time t = 2.5 in 1D and 2D simulation. For 2D, we
show the horizontal cut through the center of the plasma sheet, at y = 0. Grid density for 1D is 128 points per unit length.
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Fig. 5 Dependence of the thinning velocity u80 for parameters
τ = 2, uinit = −1.0 on the lobe magnetic field. Corre-
sponding Alfvén velocity uA is shown for comparison as
a dashed line.

surrounding plasma (Fig. 4a). For a few moments, the re-
sulting rarefaction wave is similar to the one in the 1D
simulation; however, as the boundary with the magnetic
lobes moves inward due to loss of the pressure balance,
the plasma sheet is compressed and the rarefaction wave
is no longer visible (Fig. 4d). Despite the apparent loss
of the rarefaction wave, the earthward plasma flow and
the accompanying thinning of the plasma sheet continue
(Figs. 4b, 4c).

For further analysis of the plasma sheet thinning, we
measure the propagation velocity of its front. Therefore,
we need to observe the location of the thinning front
through time. To reduce the influence of spurious move-
ment of the boundary, we identify the location where the
sheet thickness drops to 80% of the initial condition, and
use it for measuring the velocity of the thinning front u80.
The results are shown in Fig. 5.

Convergence was checked with several simulations
calculated with a different grid size, as well as several sim-
ulations with increased Lx and Ly. We can see a good
agreement between grid densities 16 and 32, both from
pressure profiles as well as in the measured velocity of the
thinning front (Fig. 5). More specifically, for βlobe ≤ 1.0,
the disagreement in the velocity of the thinning front be-
tween 16 and 32 grid densities is below 5%.

4. Comparison of 1D and 2D Model
In the 1D model [5], the initial disturbance generates a

rarefaction wave travelling tailward. As the pressure drops
behind the wave, the boundary between sheet and lobe is
forced to move inward. Since the plasma beta in the sheet
is greater than one, the rarefaction wave moves at the sound
velocity, cs,sheet. The thinning front closely follows the rar-
efaction wave. The conditions in the magnetic lobes influ-
ence only the thinning amount.

In contrast, in the 2D model, the rarefaction wave is
lost in the recompression of the plasma sheet (see Fig. 4d);

therefore, the pressure drop that should have been what
causes the thinning to propagate is absent. However, the
thinning continues to propagate nevertheless, indicating
that the rarefaction wave is not the sole component of the
plasma sheet thinning. Furthermore, the thinning front ve-
locity is lower than the rarefaction wave velocity. This is
another indicator that thinning dynamics have separated
from the rarefaction wave that initially caused them. Fi-
nally, the thinning front velocity shows a strong depen-
dence on the conditions in the magnetic lobes. For ex-
ample, the thinning front propagates faster when the lobe
magnetic field is stronger (see Fig. 5).

5. Conclusion
To summarize, starting from a simple 1D model of the

plasma sheet thinning, we have extended it to a 2D con-
figuration by adding the north and south magnetic lobes;
this drastically changed the thinning dynamics. We have
found that the signature aspect of the Current Disrup-
tion model of the plasma breakup—the rarefaction wave—
essentially disappears soon after the event begins. How-
ever, the plasma sheet thinning keeps propagating, though
at a slower velocity which is strongly influenced by the
conditions in the magnetic lobes. The dynamics of plasma
sheet thinning appear to be dominated by a complicated
sheet–lobe interaction that could not be accounted for in
the 1D model.

A more in-depth exploration of the parameter space,
to determine how the thinning velocity is influenced by the
changes in the state of the lobe plasma and the strength of
the initial disturbance, will be presented elsewhere.
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