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A phase space structure of the electron distribution function is investigated by the gyrokinetic theory and
numerical simulations to investigate a possible mechanism of the excitation of the beam instability which induces
collisionless magnetic reconnection in a strong guide field. It is shown that the perturbed electron distribution
function develops in proportion to the shifted Maxwellian distribution as the reconnection electric field accelerates
electrons along the guide field at the X-point, with parity symmetry around the z- axis. The accelerated electrons
are expected to excite the kinetic Alfvén waves (KAWs) when the beam velocity exceeds the Alfvén speed. The
obtained results suggest a possible scenario for anomalous resistivity generation in the case with the strong guide
field where the beam electrons accelerated at the X-point lose their parallel momentum through interactions with
the self-excited KAWs.
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1. Introduction
Magnetic reconnection refers to the topological

change of magnetic field lines; it is a fundamental physical
process that induces the conversion of magnetic energy to
kinetic energy, leading to the self-organization of plasmas
in the laboratory and space. Simulation studies on mag-
netic reconnection have been conducted based on the mag-
netohydrodynamics (MHD) model [1, 2], where resistivity
plays a role in the dissipation process at the reconnection
point (X). However, as is well known, the Spitzer resistiv-
ity is overly small to facilitate the fast reconnection events
in space and fusion plasmas, such as the sawtooth crash.
Therefore, two-fluid effects or the kinetic effects are con-
sidered important for realizing sufficiently fast magnetic
reconnection [3–12].

Anomalous resistivity is one of the factors that con-
tinuously drive the magnetic reconnection in collisionless
plasmas. Over the years, the anomalous resistivity has
been discussed regarding its induction during the mag-
netic reconnection and how it facilitates a fast reconnec-
tion. Conventionally, the lower hybrid drift instability and
the drift kink instability can induce the anomalous resistiv-
ity in collisionless magnetic reconnection without a guide
field [13,14]. In magnetic reconnection with a strong mag-
netic guide field, e.g., the sawtooth crash, the particle orbit
effects related to the nongyrotropic motion may be sub-
sidiary. Conversely, the anomalous resistivity or the elec-
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tron inertia effect may have a significant impact on the col-
lisionless reconnection with the strong guide field. Recent
measurements by the magnetospheric multiscale science
mission have shown that the reconnection rate is higher
than that predicted by the Hall- MHD model, implying
that the anomalous resistivity enhances the reconnection
rate [15]. Furthermore, in a recent simulation study [16],
it was shown that the anomalous resistivity driven by the
Buneman instability accelerates the reconnection rate. As
is known, the Buneman instability is driven by super ther-
mal electrons; however, the mechanism through which the
unstable condition is realized at the X-point is unclear.

In strongly magnetized plasmas, the collective mo-
tions of charged particles can be described using the gy-
rokinetic equations in a characteristic time scale longer
than the gyro period [17]. The gyrokinetic equations are
often used for the analysis of turbulent transport in fusion
plasmas [18], and they were recently applied to the mag-
netic reconnection with a strong guide field [19–21].

We postulate the beam instability of the kinetic Alfvén
waves (KAWs) as a possible cause of the anomalous resis-
tivity in the collisionless reconnection with a strong guide
field, and discuss the spontaneous destabilization process
with the structural changes in electromagnetic fields and
the distribution function during the magnetic reconnection.
Our arguments are twofold. First, an analytic solution of
the collisionless gyrokinetic equations for the distribution
function at the X-point is derived using the symmetry of
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the system under the gyrokinetic ordering. It is revealed
that the deviation of the gyrocenter distribution function
f̃‖s from the initial condition is proportional to v‖FM at the
X-point, where v‖ is the velocity along the magnetic field
and FM is the Maxwellian distribution. To our knowledge,
no analytic solution of the velocity distribution function at
the X-point has been reported in the literature, although
the electron acceleration was expected from the extended
MHD or two-fluid models. Second, the analytic solution
of f̃‖s exhibits a beam velocity proportional to the recon-
nected flux. Thus, as the magnetic reconnection develops,
the beam velocity may exceed the Alfvén speed, leading
to the destabilization of the KAWs. This suggests that the
unstable condition of KAWs may be spontaneously satis-
fied during the collisionless magnetic reconnection, which
provides us with a possible scenario of the self-generation
of anomalous resistivity.

A conventional kinetic simulation study was con-
ducted on the Buneman instability with a parallel wave-
length of the order of the ion skin depth, di [16]; how-
ever, the researchers were unable to investigate the KAWs
with much longer parallel wavelengths, k‖ � d−1

i . Con-
versely, the present study focuses on the latter using the
gyrokinetic theory with k‖/k⊥ � 1. Additionally, consid-
ering a finite beta plasma, βe � me/mi, with respect to the
electron-to-ion mass ratio, the thermal electron speed is es-
tablished to be much larger than the Alfvén one. Thus, the
electron beam developed via magnetic reconnection may
satisfy the instability condition of KAWs, which is easily
fulfilled compared with the Buneman instability condition.
Therefore, the spontaneous realization of the Buneman in-
stability condition is difficult during the collisionless re-
connection. In this work, we conducted 2-D gyrokinetic
simulations to elucidate the generation of the beam dis-
tribution function under the collisionless magnetic recon-
nection, and the stability of the KAWs under a simplified
beam distribution. The unified simulation of the magnetic
reconnection and the self-consistent beam instability in-
duced during the reconnection will be considered in a fu-
ture study.

The present study is organized as follows: in Sec. 2,
we describe a gyrokinetic model for the collisionless re-
connection and discuss structures of the distribution func-
tion at the X-point from a viewpoint of symmetry in the
system. In Sec. 3, we discuss the beam instability of the
KAWs using the linear dispersion relation. In Sec. 4, the
formation of the electron beam is elucidated by gyroki-
netic simulations of the collisionless reconnection. Sum-
mary and discussions are provided in Sec. 5.

2. Model
2.1 Gyrokinetic equations

We consider the same gyrokinetic model in a slab
plasma as that in Ref. [20], where the uniform guide field
is given by B0 = B0ẑ, with the translational symmetry

in the z direction. The distribution function is divided
into equilibrium and perturbed parts, (Ftots = FMs + f̃s),
where Ftots and FMs represent the total and the Maxwellian
distribution functions, respectively. The subscript, s, de-
notes the particle species (s = i for ions and s = e for
electrons). We assume the delta-f gyrokinetic ordering,
εgk ∼ f̃s/FMs ∼ ṽE×B/vti ∼ B̃⊥/B0 ∼ ρi/L � 1, where
ṽE×B, vti, B̃⊥, ρs, and L are the E × B drift velocity, the
thermal speed, the perpendicular component of perturbed
magnetic field, the thermal gyroradius, and a characteris-
tic scale, respectively. Throughout the present study, the
symbol, ˜ , represents the perturbed quantities of the or-
der of O(εgk). For simplicity, it is also assumed that f̃s has
the Maxwellian distribution in the perpendicular velocity
space, i.e., f̃sk(v‖, v⊥) = f̃‖sk(v‖)FMs⊥(v⊥).

The time evolution of the perturbed distribution func-
tion, f̃‖sk, in the perpendicular wavenumber space (k) is de-
scribed by the gyrokinetic Vlasov equation integrated over
v⊥, the quasi-neutrality conditions, and the Ampére law:

∂t f̃‖sk − es

Ts
v‖FM‖sẼ‖sk

−
∑

k′

∑
k′′
δk′+k′′,k

ẑ · (k′ × k′′)
B0

J0sk′ (φ̃k′ − v‖Ã‖k′ ) f̃‖sk′′

= 0, (1)∑
s

es

∫
dv‖J0sk f̃‖sk =

∑
s

e2
sn0

Ts
(1 − Γ0sk)φ̃k, (2)

k2
⊥Ã‖k = μ0

∑
s

es

∫
dv‖v‖J0sk f̃‖sk, (3)

where

Ẽ‖sk = −∂t J0skÃ‖k

+
∑

k′

∑
k′′
δk′+k′′,k

ẑ · (k′ × k′′)
B0

J0sk′ φ̃k′ J0sk′′ Ã‖k′′ ,

Γ0sk = I0(bsk)e−bsk with bsk = k2⊥ρ2
s , the modified Bessel

function I0 and J0sk = exp(−bsk/2). Ẽ‖, φ̃, Ã‖, es, Ts, and
n0 are the parallel electric field, perturbed electrostatic po-
tential, parallel component of perturbed vector potential,
electric charge, temperature, and equilibrium number den-
sity.

The gyrokinetic equations, Eqs. (1) - (3), are rewritten
in the real space

∂t f̃‖s − es

Ts
v‖FM‖s〈Ẽ‖〉s + [〈φ̃ − v‖Ã‖〉s, f̃‖s] = 0, (4)

∑
s

es

∫
dv‖〈 f̃‖s(x, v‖, t)〉s

=
∑

s

e2
sn0

Ts
(φ̃(x, t) − 〈〈φ̃(x, t)〉〉s), (5)

∇2
⊥Ã‖(x, t) = −μ0

∑
s

es

∫
dv‖v‖〈 f̃‖s(x, v‖, t)〉s, (6)

where the gyrophase-average operators for an arbitrary
function, g̃(x), are defined as 〈g̃(x)〉s = (1/LxLy)∫

dx′J0s(x′)g̃(x − x′) and 〈〈g̃(x)〉〉s = (1/LxLy)
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∫
dx′Γ0s(x′)g̃(x − x′), with the gyroradius given as ρs =

msvts/esB0, the particle mass ms, and the thermal speed
vts =

√
Ts/ms. J0s(x) ≡ ∑

k exp(ik · x)J0sk and Γ0s(x) ≡∑
k exp(ik · x)Γ0sk. The perturbed distribution function,

f̃‖s(x, v‖, t), is a function of the gyrocenter position (x). Lx

and Ly refer to the system size in the x and y directions with
the periodic boundary condition, respectively. The non-
linear term in the gyrokinetic Vlasov equation, Eq. (4), is
represented in terms of the Poisson’s brackets showing the
E × B drift and the advection along the perturbed magnetic
field. The Poisson brackets in the gyrocenter coordinates
are denoted by [g̃, h̃] where [g̃, h̃] = (∂xg̃∂yh̃ − ∂yg̃∂xh̃)/B0.
The parallel electric field is given by

〈Ẽ‖〉s = −∂t〈Ã‖〉s − [〈φ̃〉s, 〈Ã‖〉s]. (7)

2.2 Symmetry of the system
In the collisionless gyrokinetic system for the mag-

netic reconnection, we verify the preservation of the par-
ity symmetry which is utilized to derive the analytic solu-
tion of the gyrocenter distribution function at the X-point.
Here, we consider the initial condition:

f̃‖s(x, y, v‖, t = 0)

=
ñinit√
2πvts

exp

[
−
(
v‖ − U0s cos( 2πx

Lx
)
)2

2v2ts

]

+ ε cos
(2πx

Lx

)
cos

(2πy
Ly

)
FM‖s. (8)

The first term on the right indicates the shifted Maxwellian
distribution, which produces the initial profile of Ã‖ in pro-
portion to ñinitU0s cos( 2πx

Lx
). The second term is a small

seed that triggers the reconnection. The reconnecting field
is included in the perturbed part, not in the background
part. Notably, the parallel drift velocity, U0s, can be O(vts),
whereas the amplitude providing the perturbed number
density, ñinit, is O(εgkn0). Therefore, the perturbed paral-
lel flow given by f̃‖s is O(εgkvts), which is consistent with
the conventional delta-f gyrokinetic ordering.

The initial condition has a symmetry for the rever-
sal of the coordinates around the X-point, that is, i.e.,
f̃‖s(x, y, v‖, t = 0) = f̃‖s(−x,−y, v‖, t = 0). Equations (4) -
(6) are invariant under the coordinate transformation of
(x, y) → (−x,−y). We divide f̃‖s into even parity ( f̃s+) and
the odd parity ( f̃s−) components:

f̃s+(x, v‖) =
f̃‖s(x, v‖) + f̃‖s(−x, v‖)

2
, (9)

f̃s−(x, v‖) =
f̃‖s(x, v‖) − f̃‖s(−x, v‖)

2
, (10)

so that f̃s+(x, v‖, t) = f̃s+(−x, v‖, t) and f̃s−(x, v‖, t) =
− f̃s−(−x, v‖, t). Similarly, Ẽ‖s+, Ẽ‖s−, φ̃+, φ̃−, Ã‖+ and Ã‖−
are defined. Thus, Eq. (4) is rewritten as

∂t f̃s+ = v‖
es

Ts
FM‖s〈Ẽ‖〉s+ − [〈φ̃+ − v‖Ã‖+〉s, f̃s+]

− [〈φ̃− − v‖Ã‖−〉s, f̃s−], (11)

∂t f̃s− = v‖
es

Ts
FM‖s〈Ẽ‖〉s− − [〈φ̃+ − v‖Ã‖+〉s, f̃s−]

− [〈φ̃− − v‖Ã‖−〉s, f̃s+]. (12)

If the initial condition of f̃‖s(x, v‖, t = 0) has the even par-
ity only, like Eq. (8) (namely f̃s− = 0), Eqs. (11) and (12)
become

∂t f̃s+ = v‖
es

Ts
FM‖s〈Ẽ‖〉s+ − [〈φ̃+ − v‖Ã‖+〉s, f̃s+], (13)

∂t f̃s− = 0. (14)

Thus, the perturbed distribution function preserves the par-
ity symmetry around the X-point,

f̃‖s(x, v‖, t) = f̃‖s(−x, v‖, t). (15)

Substituting f̃s+ for f̃‖s in Eqs. (5) and (6), 〈φ̃〉s and 〈Ã‖〉s
also preserves the parity symmetry around the X-point,

〈φ̃〉s(x, t) = 〈φ̃〉s(−x, t), (16)

〈Ã‖〉s(x, t) = 〈Ã‖〉s(−x, t). (17)

Here, the “even” and “odd” parities are defined in
terms of the symmetry with respect to the X point (not the
y axis), where Eqs. (16) and (17), respectively, show the
signs of φ and A‖ unchanged for the rotation of ±π, not
for the reversal of either x or y. Thus, φ and A‖ possess
the odd parity with respect to the reversal of x, consistent
with the tearing mode theory. Noteworthily, the even par-
ity mode considered here contains an “asymmetric” profile
with respect to the y axis.

2.3 Derivation of the distribution functions
at the X-point

On the basis of the above discussion, we find that the
Poisson’s brackets vanish at the X-point (x = 0) where
∂x = 0 and ∂y = 0, if f̃‖s as well as 〈φ̃〉s and 〈Ã‖〉s is sym-
metric in Eqs. (15) - (17). Hence, Eq. (4) is reduced to

∂t f̃‖s +
es

Ts
v‖FM‖s∂t〈Ã‖〉s = 0, (18)

at the X-point. This implies that the structure of the dis-
tribution function at the X-point is determined only by
the parallel acceleration because of the induction elec-
tric field. In other words, the reconnection electric field
〈Ẽ‖〉s is balanced with the inertia force; thus, the inertia
is a cause of the collisionless reconnection in the present
model. We find the solution of f̃‖s at the X-point by inte-
grating Eq. (18) over t:

f̃‖s(x = 0, v‖, t) − f̃‖s(x = 0, v‖, t = 0)

= − es

Ts

(
〈Ã‖〉s(x = 0, t) − 〈Ã‖〉s(x = 0, t = 0)

)
v‖FM‖s.

(19)
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The time variation of the perturbed distribution function f̃‖s
at the X-point is proportional to the reconnected magnetic
flux:

ΔÃ‖s ≡ − es

ms

(
〈Ã‖〉s(x = 0, t) − 〈Ã‖〉s(x = 0, t = 0)

)
,

(20)

and it has a velocity dependence of the shifted Maxwellian
v‖FM‖s. This means that the induced electric field at the
X-point generates electron and ion beams. The generated
beam velocity, ΔŨs, is evaluated at the X-point using the
gyrocenter distribution function:

ΔŨs(x = 0, t) = Ũs(t) − Ũs(0)

=
1
n0

∫
dv‖v‖ f̃‖s(x = 0, v‖, t) − ñinit

n0
U0s, (21)

where Ũs = 1/n0

∫
dv‖v‖ f̃‖s(x = 0, v‖, t), and U0s is the

initial averaged velocity at the X-point (see Eq. (8)). From
Eqs. (19) - (21), ΔŨs = ΔÃ‖s ∼ εgkvts.

Here, we discuss the energy conversion from the mag-
netic energy,

∫
dxdyB̃2⊥/2, to the parallel electron beam en-

ergy,
∫

dxdymen0Ũ2
e/2,

∫
S dr

dxdy
men0Ũ2

e

2
= α

∫
S simu

dxdy
B̃2⊥
2μ0
, (22)

where α is the energy conversion rate of the electron ki-
netic energy accelerated along the guide field in the small
diffusion region to the magnetic energy released during the
magnetic reconnection in the region characterized by the
ion gyroradius scale and B̃⊥ ∼ εgkB0. Assuming that a part
of the magnetic energy released in the simulation region,
S simu, is converted to the beam energy in the diffusion re-
gion, S dr, we find that

Ũ2
e = αε

2
gk

mi

me
V2

A
S simu

S dr
, (23)

with an Alfvén speed of V2
A = B2

0/μ0min0. It is roughly
estimated that S simu ∼ L2

x > ρ
2
i and S dr ∼ d2

e where Lx is
the simulation box size and de is the electron skin depth.
Thus, Eq. (23) is reduced to

Ũe >

√
α

mi

me

εgk

εa
VA =

√
α

mi

me
εgkvte, (24)

where VA = εavte and εa = (me/miβi)1/2. Thus, from the
viewpoint of energy balance, we find that Ũe ∼ εgkvte,
consistent with the delta-f ordering, whereas the super
Alfvénic beam velocity, Ũe > VA can be generated in the
case of

√
αmi/me ∼ 1 and εgk > εa.

2.4 Comparison with MHD and Vlasov
models

The comparison results between the gyrokinetic
model and a reduced MHD model are discussed below. As-
suming the long wavelength approximation of k⊥ρi � 1,

we neglect the higher order terms of k⊥ by expanding the
gyrophase average operators. The approximated forms are
J0sk ∼ 1 and Γ0ek ∼ 1, whereas the lowest order term of
the ion polarization is maintained, i.e., Γ0ik ∼ 1 − k2⊥ρ2

i .
The reduced gyrophase average operators are summarized
as follows:

J0s(x) ∼ 1, (25)

Γ0s ∼
⎧⎪⎪⎨⎪⎪⎩

1 (for s = e)

1 + ρ2
i ∇2⊥ (for s = i).

(26)

Taking v‖ integrals of Eq. (4) multiplied by es and esasv‖
and summmed over s, individually, the zeroth and the first
order moments of the gyrokinetic Vlasov equation are de-
rived using Eqs. (5) and (6):

∂t∇2
⊥φ̃ + [φ̃,∇2

⊥φ̃] = V2
A[J̃‖, Ã‖], (27)

∂t

(∑
s

e2
sn0

ms
Ã‖ +

J̃‖
μ0

)
+ [φ̃,

∑
s

e2
sn0

ms
Ã‖ +

J̃‖
μ0

]

− [Ã‖,
∑

s

∫
dv‖esv

2
‖ f̃‖s] = 0, (28)

where J̃‖ = −∇2⊥Ã‖. When the moment hierarchy is trun-
cated at the second order in the low-β limit and the ion
parallel current is neglected, Eq. (28) is rewritten as

∂t F̃ + [φ̃, F̃] = 0, (29)

where F̃ = J̃‖ + d2
e Ã‖. Therefore, in this limit, Eqs. (27)

and (29) are equivalent to the vorticity equation and the
Ohm’s law in the imcompressible 2-D slab model of the
extended MHD equations [5], respectively. Thus, the same
argument on the parity symmetry around the X-point can
be applied to the extended MHD equations. However, the
validity of the long wavelength approximation is question-
able around the X-point, where structures with k⊥ρi > 1 of-
ten develop in the nonlinear phase. Therefore, the analyses
based on the gyrokinetic equations or the Vlasov-Maxwell
equations are essential toward the quantitative understand-
ing of the collisionless reconnection.

Here, we discuss the symmetry property around the
X-point using the collisionless Vlasov-Maxwell equations
in the five dimensions of phase space:

∂t fs(x⊥, u⊥, vz) + u · ∇ fs(x⊥, u⊥, vz)

+
es

ms
(E(x⊥) + u × B(x⊥)) · ∂u fs(x⊥, u⊥, vz) = 0,

(30)

∂t B = −∇ × E, (31)

1
ε0
∂t E = ∇ × B − μ0 J, (32)

J =
∑

s

es

∫
u fsd

3u, (33)

assuming the translational symmetry in the z direction.
Under the coordinate transformation of (x⊥, u⊥, vz) →
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(−x⊥,−u⊥, vz), we find (B⊥, Bz, E⊥, Ez, J⊥, Jz,∇⊥, ∂v⊥ , ∂vz )
→ (−B⊥, Bz,−E⊥, Ez, −J⊥, Jz,−∇⊥,−∂v⊥ , ∂vz ). As de-
scribed in Sec. 2.2, we divide fs, B, and E into even and
odd parity components and rewrite Eq. (30) as follows:

∂t fs+ + u⊥ · ∇⊥ fs+ +
es

ms
(E⊥+ · ∂u⊥ fs− + Ez+ · ∂uz fs+

+ E⊥− · ∂u⊥ fs+ + Ez− · ∂uz fs−)

+
es

ms

(
(u⊥ × B+) · ∂u⊥ fs+ + (u⊥ × B+) · ∂uz fs−

+ (u⊥ × B−) · ∂u⊥ fs− + (u⊥ × B−) · ∂uz fs+

+ (uz × B+) · ∂u⊥ fs− + (uz × B−) · ∂u⊥ fs+

)
= 0,

(34)

∂t fs− + u⊥ · ∇⊥ fs− +
es

ms
(E⊥+ · ∂u⊥ fs+ + Ez+ · ∂uz fs−

+ E⊥− · ∂u⊥ fs− + Ez− · ∂uz fs+)

+
es

ms

(
(u⊥ × B+) · ∂u⊥ fs− + (u⊥ × B+) · ∂uz fs+

+ (u⊥ × B−) · ∂u⊥ fs+ + (u⊥ × B−) · ∂uz fs−
+ (uz × B+) · ∂u⊥ fs+ + (uz × B−) · ∂u⊥ fs−

)
= 0.

(35)

If fs has the even parity component only, namely, fs− = 0
with E⊥+ = 0, Ez− = 0, B⊥+ = 0 and Bz− = 0, Eqs. (34)
and (35) lead to

∂t fs+ + u⊥ · ∇⊥ fs+ +
es

ms
(Ez+ · ∂uz fs+ + E⊥− · ∂u⊥ fs+)

+
es

ms

(
(u⊥ × Bz+) · ∂u⊥ fs+ + (u⊥ × B⊥−) · ∂uz fs+

+ (uz × B⊥−) · ∂u⊥ fs+

)
= 0, (36)

∂t fs− = 0, (37)

where the coupling of the symmetric part doesn’t sponta-
neously generate f− and the distribution function preserves
the parity symmetry. If the distribution function has a sym-
metry for the reversal of the coordinates around the X-
point, where ∇⊥ = 0, E⊥− = 0 and B⊥− = 0 at the X-point,
Eq. (36) would be reduced to

∂t fs+ +
es

ms
(−∂tAz+∂uz fs+) = − es

ms
(u⊥ × Bz+) · ∂u⊥ fs+,

(38)

where Ez+ = −∂tAz+ as ∂z = 0. The r.h.s in Eq. (38)
stands for the gyromotion. In the Vlasov-Maxwell sys-
tem, it is difficult to find the analytic solution of the dis-
tribution function at the X-point unless fs+ is gyrotropic
(∂u⊥ fs+ = 0). Assuming Bz � B⊥ and fs+ = FMs + f1s+

where f1s+ is the perturbed distribution function, and the
Maxwellian distribution becomes independent of the gy-
rophase, and r.h.s of Eq. (38) vanishes. Thus, Eq. (38) in
the leading order is described as

∂t f1s+ +
es

Ts
vzFMs∂tAz+ = 0, (39)

which is similar to Eq. (18) in the gyrokinetic Vlasov sys-
tem.

We note that 2-D parity transformation is described re-
garding the case with a strong guide field, which is differ-
ent from a standard parity transformation in the 3-D case.
In the 3-D case (x, y, z) → (−x,−y,−z), the magnetic field
(B) is unchanged, since B is an axial vector that changes
direction under the 3-D parity transformation. Conversely,
in the 2-D case with (x, y)→ (−x,−y), the coordinate sys-
tem remains right-handed, and hence, the 2-D parity trans-
formation is constructed by flipping the sign of the perpen-
dicular magnetic field as discussed above.

3. Beam Instability
The beam distribution of f̃‖e along B0 is formed by

the parallel electric field during the collisionless magnetic
reconnection. In this section, we discuss the stability of
the beam electrons by considering the z dependence of
the perturbations with the wavenumber kz. From the gy-
rokinetic simulation assuming FMs � f̃‖e, the total dis-
tribution function at the X-point is represented using the
shifted Maxwellian distributions with the beam compo-
nent, Ũe � vte,

FM‖e + f̃‖e � n0√
2πvte

exp
(
− (v‖ − Ũe)2

2v2te

)
, (40)

where f̃‖e = Ũev‖/v2teFM‖e from the solution at the X-point,
Eq. (19). According to the gyrokinetic ordering, the par-
allel drift velocity is O(εgkvts), whereas the number den-
sity is O(n0), leading to the deviation from the stationary
Maxwellian distribution of the order of O(εgkFM). Apart
from this ordering, we investigate the instability of the
KAWs using the velocity parameter, Vb.

For simplicity, we consider the local dispersion rela-
tion of a plane wave with the wavenumber of k = (k⊥, kz),
neglecting the spatial variation of the background distri-
bution, F0e, with the beam velocity, Vb. This is a crude
assumption; however, it is as meaningful as the first step
of the stability analysis and is necessary for determining if
the KAWs can be destabilized during the magnetic recon-
nection even in the limit of plane waves. Thus, we have a
linearized set of gyrokinetic equations:

−iω f̄sk + ikzvz f̄sk − es

ms
J0sk(ikzφ̄k⊥ −

iω
c

Ā‖k⊥ )∂vF0s = 0,

(41)
∑

s

es

(∫
J0sk f̄sdv‖ − n0esφ̄k⊥

Ts
(1 − Γ0sk⊥ )

)
= 0, (42)

k2
⊥Ā‖k⊥ = μ0

∑
s

es

∫
v‖J0sk f̄skdv‖, (43)

F0e =
n0√
2πvte

exp
(
− (v‖ − Vb)2

2v2te

)
, F0i = FM‖i, (44)

where ¯ denotes the linear perturbations. Equations (41) -
(43) yield the dispersion relation for Ti = Te
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Fig. 1 k⊥ρi vs the real frequency ωr/kzVA (top panel) and the
growth rate γ/kzVA (bottom) for Vb/VA = 1.5. The dotted
line denotes the numerical solutions of Eq. (45) and the
solid line denotes the approximated dispersion relation of
the KAWs [3].

∑
s

(1 − Γ0sk) =

⎛⎜⎜⎜⎜⎜⎝
(
ω

kzVA

)2 ∑
s

1

k2⊥ρ2
i

(1 − Γ0sk) − 1

⎞⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎝
∑

s

Γ0sk(1 + ζsZ(ζs))

⎞⎟⎟⎟⎟⎟⎠ , (45)

where ζe = (ω − kzVb)/kzvte , ζi = ω/kzvti and Z(ζs) is the
plasma dispersion function.

We have conducted a numerical analysis of Eq. (45).
The dotted lines in Fig. 1 show the k⊥ dependence of
the real frequency, ωr, and the linear growth rate, γ,
for Vb = 1.5VA. The numerical solution of the disper-
sion relation represents the KAWs, and it is compared
with the approximated dispersion relation of the KAWs,

(ω/kzVA =

√
1 + k2⊥ρ2

i ) [22] (the solid line in Fig. 1). In
the bottom panel, we find the positive growth rate for
0 < k⊥ρi < 0.8, of which the maximum value is 0.02
kzVA around k⊥ρi � 0.54, suggesting the beam-excited
KAWs with ω/kz = 1.25VA, which is slightly slower than
Vb = 1.5VA.

Figure 2 shows the maximum growth rates, γmax, as
functions of the electron beam velocity, Vb, with differ-
ent mass ratios of me/mi = 1/100, 1/200, and1/400. Evi-
dently, γmax has positive values when Vb > VA for all cases.
Namely, if the beam velocity exceeds the Alfvén speed, the
KAWs become unstable. We have also observed the depen-
dence of the growth rate on the mass ratio through VA/vte.
The critical beam speed of Vb = VA normalized by the
electron thermal speed, vte, is given by VA/vte =

√
me/miβi

for Ti = Te; it decreases with the increase in the ion-to-
electron mass ratio and is less than unity for βe > me/mi.
Thus, the stability criteria for the KAWs can be lower

Fig. 2 The maximum growth rate γmax/kzVA plotted for the
beam velocity Vb/VA for me/mi = 1/100, 1/200, and
1/400. In all cases, the KAWs are unstable when the
beam velocity exceeds the Alfvén speed.

than that for the Buneman instability (i.e., Vb > vte). If
the normalization is kzL → kz, the growth rate of the
simulation timescale would be γL/vti = γL/

√
βiVA. For

example, for Vb = 1.5VA, the maximum growth rate is
γmax ∼ 0.02VA/L = 0.14vti/L.

4. Simulation Result
The numerical simulation of the collisionless recon-

nection is conducted by solving the gyrokinetic equations,
Eqs. (1) - (3), to verify the parity symmetry and the struc-
tures of the distribution function discussed in Sec. 2.2 and
2.3 and to evaluate the time-development of the electron
beam velocity at the X-point. The simulation code uses
the Fourier spectral method for the discretization of the
real space and for the computation of spatial derivatives.
The fourth-order Runge-Kutta-Gill method is applied for
the time integration. The used parameters are ratios of
mass, temperature, and charge: me/mi = 1/200, Te/Ti = 1,
ee/ei = −1, βi = 0.02. The normalized skin depth is
de/ρi =

√
me/βimi = 1/2 and the normalized Alfvén speed

is VA/vte =
√

me/βimi = 1/2. We set ε = 5 × 10−5 and
(Ũ0e, Ũ0i) = (−0.31104vte, 0). The simulation box is given
by Lx/ρi = 2.5π and Ly/ρi = 5π in the configuration space
and −5 ≤ v‖/vts ≤ 5 in the velocity space, and it is dis-
cretized by 512× 512× 127 grid points. The characteristic
time scale L/vti is rewritten by use of the Alfvén time for
the reconnecting field, Lx/Va⊥, as

L
vti
=
ρi

Lx
√
βi

Lx

Va⊥
∼ 5.66

Lx

Va⊥
,

where Va⊥ = B⊥/
√
μ0n0mi. The initial condition of f̃‖s is

given by Eq. (8), providing the initial perturbed vector po-
tential written as 〈Ã‖〉s(x, t = 0) = Ã‖0 cos(2πx/Lx), to pro-
duce the sheared magnetic field through the parallel cur-
rent.

Figure 3 shows snapshots of the magnetic field lines
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Fig. 3 Structures of (a) the magnetic field lines Ã‖, (b) parallel electric field 〈Ẽ‖〉e, and (c) parallel current density J̃‖ structures on the
reconnection plane at tvti/L = 90 in the nonlinear phase. Black arrows in Fig. 3 (a) show the direction of the E × B flow.

(contour of Ã‖), the parallel electric field for electrons
〈Ẽ‖〉e, and the current density (J̃‖) during the magnetic re-
connection (at tvti/L = 90) which takes place on the X-
point at (x/ρi, y/ρi) = (0, 0). The inflow is parallel to the
x- axis and the outflow is parallel to the y- axis. The mag-
netic reconnection also occurs at the corners because of the
doubly periodic boundary condition in x and y. The mag-
netic reconnection at the corner should be the same as that
at x = y = 0, except for the direction of the reconnecting
magnetic field because of the symmetry. The reconnec-
tion at x = y = 0 may interact with the reconnection at
the corners. We find that the separatrix field lines have an
X-shaped structure in the nonlinear phase when the fast re-
connection proceeds rapidly. The X-shaped structure along
the separatrix is also formed in the profiles of the current
density and the electric field, as shown in Fig. 3 (b) and (c)
where the rotational symmetry property around the z axis
with the angle of ±π with respect to the reconnection point
is well preserved. These typical structures have also been
reported in previous studies on collisionless reconnection
with the two-fluid effect [4].

In the case with a weak or moderately intense guide
field, the asymmetry of the diffusion region appears be-
cause of the Hall effect [10]. However, in the present case
with a strong guide field, the parallel component of the per-
turbed magnetic field is negligible with respect to the guide
field. Thus, the symmetry of the flux function both in the
x and y directions is preserved, consistent with the simula-
tion results.

Figure 4 shows the time evolution of the reconnection
electric field at the X-point, i.e., 〈Ẽ‖〉e = −∂t〈Ã‖〉e. The par-
allel electric field grows exponentially in time in the early

phase and the reconnection rate
(
= log

(
〈Ẽ‖〉e(t)/〈Ẽ‖〉e(t =

0)
))

is about 0.17vti/L in the linear growth phase. The

Fig. 4 Time evolution of the reconnection electric field
(−∂t〈Ã‖〉e) at the X-point. The reconnection rate grows
rapidly from approximately tvti/L = 80, and its peak is at
tvti/L = 100.

growth rate of Ẽ‖e increases nonlinearly after tvti/L = 80,
indicating the acceleration of the magnetic reconnection
and Ẽ‖e peaks at tvti/L ∼ 100 when the magnetic field lines
have almost reconnected. It has been pointed out that the
acceleration of the reconnection rate does not occur in the
case of the collisional reconnection where the Ohmic dis-
sipation is dominant [23].

Here, we discuss the structures of the electron dis-
tribution function observed during the reconnection. Fig-
ure 5 shows the spatial structures of the electron distribu-
tion function f̃‖e at v‖/vte = ±1.03, plotted on the recon-
nection (x − y) plane in the nonlinear phase (tvti/L = 90).
At the X-point, f̃‖e is negative for v‖ > 0 but positive for
v‖ < 0 since the electrons are accelerated by the positive
electric filed. The perturbed electron distribution function
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Fig. 5 Electron distribution function on the reconnection plane
at v‖/vte = −1.03 (left panel) and v‖/vte = +1.03 (right
panel) in the nonlinear phase (tvti/L = 90).

Fig. 6 Velocity-space profiles of the electron velocity distribu-
tion function at the X-point for the linear phase (tvti/L =
0), and the nonlinear phase (tvti/L = 84, 90).

is also advected along the reconnected field lines, where f̃‖e
in v‖ > 0 is elongated on the different sides of the x and y
space from those in v‖ < 0. This is because the distribution
function has the anti-symmetry configuration with respect
to the coordinate transformation of (x, y, v‖)→ (−x, y,−v‖)
and (x, y, v‖) → (x,−y,−v‖) [24]. These structures also
have the parity symmetry around the X-point, as given
in Eq. (15). The present simulation confirms that the two
kinds of symmetry of f̃‖s are stably preserved during the re-
connection process. The velocity space integration of f̃‖e,
thus, results in the cross-shaped profile of the current den-
sity around the X-point, as shown in Fig. 3 (c).

The deviation of the electron velocity distribution
function from the initial condition at the X-point, Δ f̃e(t) =
f̃‖e(t) − f̃‖e(0), is plotted in Fig. 6. Noteworthily, Δ f̃e is
proportional to v‖FM‖e, and agrees with the one derived in
Eq. (19). Furthermore, we find that the electron accelera-
tion is enhanced in the nonlinear stage (from tvti/L = 80
to 100) as the reconnection electric field increases. The
time history of the deviation of the averaged electron ve-

Fig. 7 The deviation of the averaged electron velocity from the
initial condition, ΔŨe, for N = 256 (green), 512 (blue)
and 1024 (red) at the X-point, reconnected flux (ΔÃ‖)
(purple), and Alfvén speed (VA) (black). The reconnected
flux is plotted only for N = 1024 since the behavior is the
same for all cases.

locity from the initial condition at the X-point, ΔŨe given
by Eq. (21), and the reconnected magnetic flux multiplied
by ee/Me, ΔÃ‖e given by Eq. (20), is shown in Fig. 7 where
the evolution of the beam velocity for the three cases with
different grid numbers of N ≡ Nx = Ny = 256 (green), 512
(blue) and 1024 (red) is plotted. According to Eq. (21), the
electron acceleration at the X-point should balance with
the reconnected flux. Here, the balance of ΔŨe and ΔÃ‖e
is well satisfied up to tvti/L ∼ 90, whereas the differ-
ence between the two appears in the nonlinear phase after
tvti/L ∼ 90, because of the limitation of the numerical res-
olution. A high beam velocity is found for finer resolutions
and is closer to the analytical solution (purple), whereas the
reconnected flux is the same for all cases. The peak veloc-
ities in each resolution are ΔŨe(N = 256) = 0.7228εgkvte,
ΔŨe(N = 512) = 0.8498εgkvte, and ΔŨe(N = 1024) =
0.9740εgkvte.

The subtle improvement in ΔŨe for increasing the nu-
merical resolution is attributed to the sharp structure of the
distribution function around the X-point. Figure 8 shows
the snapshots of the cross-section of Δ f̃e for N = 256, 512
and 1024 at y = 0 and tvti/L = 101. We find that the sharp
peak of Δ f̃e develops at the X-point, of which the ampli-
tude grows with N, whereas the global profile of Δ f̃e, as
well as the current density profile, is well converged. Thus,
it is difficult to completely resolve the cusp-shaped struc-
ture of Δ f̃e with the numerical resolution available, since
the cusp width is thin for a high peak value (or ΔŨe) at the
X-point to keep the current density constant. Nevertheless,
through the convergence check of ΔŨe, we can conclude
that the essence of the acceleration process of electrons
in the collisionless reconnection is well captured by the
present simulations. As shown in Ref. [20], in this simu-
lation, microstructures in the velocity space are not dom-
inant in the profiles of the distribution function. At the
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Fig. 8 The cross-section of the deviation of the electron distri-
bution function from the initial condition around the X-
point at tvti/L = 101, Δ f̃e, at y = 0 for N = 256 (dashed
line), 512 (dotted line), and 1024 (solid line).

X-point where the fine structure develops in the real space,
the distribution function in the velocity space is described
by the shifted Maxwellian distribution. The numerical er-
rors, thus, mainly stem from the lack of the spatial resolu-
tion.

Additionally, we consider the recurrence time (Trec)
because of the parallel motion of electrons along the per-
turbed magnetic field. The recurrence time is estimated as
Trec = 2π/k‖Δv‖ with k‖ = |ky∂xA‖/B0| and Δv‖ = Lv/nv,
where k‖, Δv‖, nv, and Lv are the parallel wavenumber, grid
spacing, grid number, and box size in the parallel velocity
space, respectively. For ∂xA‖/B0 ∼ 0.11 sin(2πx/Lx) esti-
mated from the initial condition, and for the wavenumber
ky ∼ 0.4/ρi of a box size perturbation, we can estimate
Trec as Trec ∼ 40πL/vti which is comparable with the to-
tal simulation time and longer than the reconnection time
scale. Furthermore, near the X-point, Trec becomes longer
than the above estimate because of the relatively weak per-
turbed field. Therefore, the perturbed distribution function
is well resolved in the parallel velocity space, and the nu-
merical error related to the velocity space resolution is con-
sidered negligible.

In Sec. 4, we demonstrated that the electron beam
Ũe ∼ εgkvte is generated at the X-point. Combining with
the results in Sec. 3, we discuss whether the KAW insta-
bility criterion by the electron beam, Ũe > VA is sat-
isfied through magnetic reconnection. By rewriting the
Alfvén speed as VA = εavte, the instability condition be-
comes 1 � εgk > εa. In the present simulation, we used
mi = 200me, and thus, εa = 0.5, since it was numeri-
cally difficult to conduct a simulation using the real ion-
to-electron mass ratio. However, the value of εa can be
reduced smaller when we use realistic parameters, e.g.,
εa = 0.07 for me/mi = 1/1836 and βi = 0.1. Therefore,
there would be a regime satisfying the KAWs instability
condition 1 � εgk > εa. Additionally, the growth rate

of the instability of KAWs, γDR, is γDR = 0.0745VA/L
for Ṽb = 2VA = vte and me/mi = 1/200, as shown in
Fig. 2. The growth rate of the simulation timescale is
γDR = 0.0745vti/(

√
βiL) = 0.526vti/L which is higher than

the linear growth rate of the reconnection, i.e., 0.17vti/L.
The non-dimensional factor, εa, is merely one of the

additional parameters, and it can be as small as εa ∼ εgk so
that the beam instability is excited by the accelerated elec-
trons during the collisionless magnetic reconnection while
keeping maintaining consistency with the low-speed paral-
lel motion under the gyrokinetic ordering.

If one uses the full-f gyrokinetic equations, which in-
volve the total distribution functions, it is expected that the
velocity of the electron beam can be increased with no lim-
itation of εa ∼ εgk. However, the physical mechanism of
the full-f model is the same as that discussed in the present
study. Namely, the parameter regime discussed above is re-
quired only for the delta-f gyrokinetic formulation, which
is also relevant to the initial acceleration process in the full-
f gyrokinetic reconnection.

Notably, full-f gyrokinetic Vlasov equation obtained
by adding the parallel nonlinear term to Eq. (4) can be writ-
ten as

∂tFtots + [〈φ − p‖A‖〉s, Ftots] = 0. (46)

If one uses the canonical momentum p‖, i.e., p‖ =
v‖ + es〈A‖〉s/ms, instead of v‖ in the full-f gyrokinetic
Vlasov equation, dropping the second order term [18].
Equation (46) states that the total distribution function
Ftots(x, p‖) at the X-point remains unchanged because of
the symmetry constraint. As the reconnection proceeds,
thus, Ftots(x, v‖) is shifted in v‖ according to the change in
〈A‖〉s. This means that the parallel acceleration of electrons
discussed above can also be found in the full-f approach,
where the shifted Maxwellian distribution of the total dis-
tribution function, i.e., Ftots(x, v‖) ∝ exp(−(v‖ − Vb)2/2),
should be found at the reconnection point if we start from
the initial Maxwellian distribution in p‖.

5. Summary and Discussion
We have investigated the phase space structures of the

distribution function in collisionless magnetic reconnec-
tion with a strong guide field using the gyrokinetic model.
The electric field induced by the electron inertia acceler-
ates the electrons at the X-point. From the stability anal-
ysis using the dispersion relation, it is suggested that the
KAWs can be excited when the electron beam velocity ex-
ceeds the Alfvén speed.

Through the discussion on the symmetry of the gy-
rokinetic equations around the X-point, it is found out that
the shifted Maxwellian distribution is formed at the X-
point by the reconnection electric field, and the electron
beam velocity is proportional to the reconnected flux. This
analytic solution is found in the gyrokinetic system but not
in the Vlasov-Maxwell system unless the gyrotropic distri-
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bution function is assumed.
From the dispersion relation of a plane wave in the

case with the beam electrons, we found that the KAWs are
unstable when the beam velocity exceeds the Alfvén speed
(Ũe > VA). This is also possible from the viewpoint of
energy conversion from the magnetic energy to the beam
energy. The instability threshold is lower than that of the
Buneman instability (i.e. Ũe > vte), if the plasma beta is
higher than the electron-to-ion mass ratio.

We also performed gyrokinetic simulations to investi-
gate the structures of the electron distribution function dur-
ing the collisionless magnetic reconnection in the strong
guide field. The fine structure of the electron distribution
function is formed along the separatrix field lines on the
reconnection plane. The fine structures preserve the sym-
metry even in the nonlinear evolution. Thus, at the X-point,
the electron velocity distribution function develops in pro-
portion to the shifted Maxwellian distribution (v‖FM‖) as
predicted by the theoretical analysis on symmetry. The ob-
served beam velocity is in good agreement with the es-
timate given by the reconnected flux, provided the fine
structures are well resolved. A possible scenario for the
generation of the anomalous resistivity is, thus, deduced
as follows. In the collisionless magnetic reconnection, the
electric field induced at the X-point accelerates electrons.
Namely, the electron inertia sustains the reconnection elec-
tric field. This results in the formation of an electron beam
along the guide field; moreover, the KAWs are destabi-
lized when the beam velocity exceeds the Alfvén speed.
Notably, the electron thermal velocity is higher than the
Alfvén speed, when the electron beta is larger than the
electron-to-ion mass ratio. This implies that the KAW can
be more easily destabilized than the Buneman instability
in space and fusion relevant plasmas with the guide field.

In the present stability analysis of KAWs, we have
considered a plane wave in Eqs. (41) - (43), where the
background profile, such as the spatial inhomogeneity of
Ã‖, is not included. It is necessary to investigate the sta-
bility of the beam electrons with the background inhomo-
geneity of the total distribution function and the reconnec-
tion magnetic field: this investigation is in progress and
will be reported elsewhere.
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