Plasma and Fusion Research: Rapid Communications

Volume 15, 1203085 (2020)

Tuning of Density Functional Theory Simulation on Vector
Processor System - Plasma Simulator Raijin -

Atsushi M. ITO, Arimichi TAKAYAMA, Osamu WATANABEY, Vijendra SINGH?,
Shubham TYAGI? and Shashank S. SINGH?
National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan
YNEC Corporation, 5-7-1 Shiba, Minato-ku, Tokyo 108-8001, Japan
DNEC Technologies India Private Limited, Plot No. 20 & 21, Sector 135, Nodia, U.P.-201304, India

(Received 29 September 2020 / Accepted 19 October 2020)

We rapidly report the benchmark of density functional theory simulation on the Plasma Simulator composed
of vector processor. The improved OpenMX code on the SX-Aurora TSUBASA of the vector processor achieved
performance higher than the Intel Xeon Gold of the scalar processor.

© 2020 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: simulation, vectorization, density functional theory

DOI: 10.1585/pfr.15.1203085

Plasma Simulator Raijin, which is the super computer
system in National Institute for Fusion Science (NIFS), has
vector processors and high bandwidth memory composed
of the NEC SX-Aurora TSUBASA (SX). The super com-
puter system achieved 10.5 PFlops. The vector processors
and the high bandwidth memory are a better solution for
field simulation with grid data such as magnetohydrody-
namics (MHD) simulation, and for large scale particle sim-
ulation such as particle in cell (PIC) simulation.

On the other hand, in terms of simulation for reac-
tor material, there is insufficient information regarding the
effect of the vector processors. Therefore, in the present
work, we report the benchmark of the density functional
theory (DFT) [1] simulation on SX.

OpenMX [2] code of version number 3.9.2 was used
for the benchmark of DFT simulation in the present work.
Moreover, we have improved in terms of vectorization for
SX. Note that there are several DFT codes based on several
algorithms which reflect the kinds of electron basis func-
tions. The OpenMX employs the pseudo-atomic localized
orbitals as electron basis functions [3,4].

As a typical benchmark target of researchers on
plasma-material interaction and fusion reactor material, we
treat a tungsten material composed of 127 tungsten atoms
which corresponds to 4 x 4 X 4 unit cells of body-centered
cubic lattice structure having a mono-vacancy. The sim-
ulation box has three dimensional periodic boundary con-
ditions. The Brillouin zones were sampled with 4 x 4 x
4 k points. To achieve uniform calculation amounts, self-
consistent field (SCF) iterations are stopped at 33 steps.

The comparison target is the JFRS-1 at the Compu-
tational Simulation Centre of International Fusion Energy
Research Centre (IFERC-CSC) composed of Intel Xeon

author’s e-mail: ito.atsushi@nifs.ac.jp

1203085-1

Gold 6148 (Xeon), which is a scalar processor. A unit to
compare the amount of computer resources is selected as a
node. One node in Plasma Simulator is one vector engine
(VE) of SX which has 8 cores. One node in the JFRS-1
is two sockets of Xeon which has 20 cores in each socket.
Based on the theoretical performance, the SX has 2.433
TFlops per node, while the Xeon has 2.816 TFlops per
node in the case of using the AVX-512 operation. There-
fore, a target performance ratio defined as the ratio of cal-
culation speed of SX to calculation speed of Xeon is ex-
pected at 0.86 (=2.433/2.816) from the theoretical perfor-
mance.

Figure 1 shows the calculation time of the present
benchmark. First, the calculation performance on SX was
improved by the present vectorization. Next, from the cal-
culation time, the actual performance ratio of SX to Xeon
is estimated at 0.93 with 8 nodes and 1.16 with 16 nodes,
which are higher than the target performance ratio, 0.86.

We describe the example of the most effective vector-
ization in the present tuning of OpenMX. A dominant part
of the calculation time is the integration of wave functions
and quantum operators having a loop structure of the fol-

SX(origina) E—— ]

{476
271 |

Xeon(original) :'3145434 l m 8 nodes @16 nodes

0 500 1000 1500
calculation time [s]

SX(improved)

Fig. 1 Calculation times of OpenMX on the NEC SX-Aurora
TSUBASA (SX) with original code and improved code,
and the Intel Xeon Gold 6148 (Xeon) with original code.

© 2020 The Japan Society of Plasma
Science and Nuclear Fusion Research



Plasma and Fusion Research: Rapid Communications

Volume 15, 1203085 (2020)

lowing example code.

/* example 1 */
#pragma omp for
for (int g = 0; g < Ng; ++g){
// .. routine depending on g.. //
for (int i=0; i < Ni; ++i){
for (int j=0; j < Nj; ++j){
// .. routine depending in i, j ..//
target[g][1]1[j] = value_ijg;
113

The loop variable g corresponds to the space grid and
its loop length Ng is greater than several thousand, while
the loops for the variables i and j correspond to the
indices of the atomic orbitals on each atom. Numbers of
atomic orbitals Ni and Nj are approximately 15 to 30
in the case of metals, and their values are not determined
before the run-time of simulation. Note that, in the ac-
tual code, the variable g is often the index for indirect
access to a grid point, and the loops of variables i and
j are split for more multi-nested loops for variables such
as principal quantum number, azimuthal quantum number,
magnetic quantum number, spin quantum number. In ad-
dition, there are loops for atoms outside of the example
structure.

In the original version of OpenMX which had been
optimized for scalar processor, the long loop for variable
g is located outside of the short loops for variables i
and j . The long loop for variable g is parallelized by
OpenMP thread. On the other hand, the short loops for
variables i and j are sometimes vectorized by Single
Instruction/Multiple Data (SIMD).

However, the loop structure of the example 1 is not
appropriate for vector processor. The vector length of SX,
256, is much longer than the vector length of SIMD, 8 or
less. For this reason, on SX, it is recommended to vectorize
the long loop for the variable g . Because the loop to
be vectorized must be placed on the innermost side, the
position of loops are replaced from the example 1.

The simple way of vectorization for the SX is to
change the loop structure as follows.

/% example 2 */
for (int i=0; i < Ni; ++i){
for (int j=0; j < Nj; ++j){
// .. routine depending in i, j ..//
#pragma _NEC vector
for (int g = 0; g < Ng; ++g){
// .. routine depending on g.. //
target[i]1[j1[g] = value_ijg;
11}

Such vectorization had actually improved computational
speed in most parts in OpenMX. However, the perfor-
mance ratio was not higher than the target performance
ratio. The reason why performance is not high is that the
calculation cost of the routines depending on variable g

increased. For example, the calculation cost of the rou-
tines depending on variable g in the example 2 is Ni X
Nj times greater than that in the example 1.

Furthermore, to suppress the calculation cost, we at-
tempted to unroll the short loop for variable j at the inside
of the vectorized loop for variable g . However, the loop
length Nj is not determined until run-time. Therefore, we
employed the following loop structure.

/% example 3 */
if(Nj <= 30) { // "30" is magic number //
for (int i=0; i < Ni; ++i){
// .. routine depending in i .. //
#pragma _NEC vector
for (int g = 0; g < Ng; ++g){
// .. routine depending ong .. //
#pragma _NEC unroll(30)
for (int j=0; j < 30; ++j){

if(j < Nj{
// .. routine depending on j
target[i][j]l[g] = value_ijg;
1111

else{
// The example 1 or 2 is described here/
}

In this example, the calculation path is divided by the loop
length Nj . An important point is that in the former calcu-
lation path, the length of the innermost loop for the variable
j becomes the constant value, 30. This short loop with
constant length is completely unrolled. Consequently, the
long loop for the variable g has no inner loop and can be
certainly vectorized. The magic number of 30 was chosen
because we knew that Nj was less than 30 in almost cases,
empirically. In our experience, it is appropriate that the
magic number is smaller than or same order as the square
root of the hardware vector length of 256. As a result, the
improved OpenMX achieved the present performance.

Finally, we can show good performance of DFT sim-
ulation on Plasma Simulator Raijin. OpenMX still has
room for optimization. In addition, for researchers on
plasma-material interaction and reactor materials, simu-
lation methods other than DFT should be optimized for
Plasma Simulator Raijin. We will report them in future.

The present work was supported by KAKENHI
(19HO011882, 19K21870, and 19H01874). The benchmark
calculation was performed on “Plasma Simulator” (NEC
SX-Aurora TSUBASA) of NIFS with the support and un-
der the auspices of the NIFS Collaboration Research pro-
gram (NIFS20KNSS130) and the JFRS-1 supercomputer
system at IFERC-CSC in Rokkasho Fusion Institute of
QST (Aomori, Japan).

[1] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
[2] T. Ozaki and contributors, http://www.openmx-square.org
[3] T. Ozaki, Phys. Rev. B 67, 155108 (2003).

[4] T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).

1203085-2

- //

/



