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The radial correlation length Lr of electron density fluctuations has been measured using a two-channel O-
mode reflectometer system in the helical-axis fusion plasma experimental device Heliotron J. The experimental
results show that Lr is around 1.4 ± 0.7 mm in three different magnetic field bumpiness configurations (i.e. low,
medium and high) for the low-density electron cyclotron heating (ECH) discharges. In high-density neutral beam
injection (NBI) discharges with HIGP and pellet injection, Lr is found to be around 1 ± 0.2 mm.
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Turbulence in magnetic confinement nuclear fusion
reactors is believed to be the dominant driver of radial heat
and particle transport in neoclassically optimized toroidal
devices such as tokamaks and stellarators/heliotrons. For
better particle/energy confinement and reactor control, the
structure and transient behavior of turbulence should be
understood and possibly mitigated. It is known that elec-
tron density fluctuations ñe correlate up to a certain ra-
dial correlation length Lr, such that Lr could be an in-
dication of the spatial size of a turbulent eddy. In a se-
ries of Doppler reflectometry experiments performed by
Fernández-Marina et al. [1] in the TJ-II stellarator, Lr was
found to be of the order millimeters to centimeters in low-
density ECH plasmas (n̄e = 0.55 × 1019 m−3). For the
ASDEX Upgrade tokamak, Schirmer et al. [2] reported
that Lr was 8.8 ± 0.4 mm in a high-density ECH plasma
(n̄e = 3.6 × 1019 m−3). In this paper, we report the first
measurements of the radial correlation length Lr of elec-
tron density fluctuations ñe in low-density ECH and high-
density NBI plasmas in Heliotron J using a two-channel
O-mode reflectometer system.

Heliotron J is a medium-sized helical-axis stellara-
tor/heliotron device. The device parameters are outlined by
Wakatani et al. [3] and Obiki et al. [4]. The two-channel O-
mode reflectometer system used in Heliotron J comprises
one scannable-frequency and one fixed-frequency reflec-
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tometer (both operating in the Ka-band with 26.5 - 40 GHz
microwaves) with an IQ detection system that gives ampli-
tude signals A1,2(t) of the electron density fluctuations [5].
Blanco and Estrada [6] discussed that correlation measure-
ments of the amplitude signals A1,2(t) can provide a radial
correlation length Lr close to the true turbulence radial cor-
relation length. In this paper, we define Lr as the aver-
age effective distance Δre f f = r2 - r1 for which the cross-
correlation between A1(t) and A2(t) reaches 1/e, where r1

is held fixed and r2 is varied by scanning the carrier fre-
quency on a shot-to-shot basis, keeping the plasma param-
eters and magnetic configuration fixed.

Figure 1 shows the time-evolution of the basic plasma
parameters in a low-density ECH discharge in three dif-
ferent bumpiness configurations. The diagnostic time-
window for the correlation measurements is chosen at the
peak-density of the discharge, from t = 250 - 260 ms. To
filter system noise, a bandpass filter (5 KHz to 200 KHz) is
applied to amplitude signals A1,2(t). No MHD modes were
observed. Reflectometer measuring data with an overall
low signal-to-noise ratio is not taken into account in this
experiment.

For a series of low-density ECH discharges (n̄e =

1.0 × 1019 m−3) in three different magnetic field bumpi-
ness configurations (i.e. low, medium and high), the cross-
correlation between A1(t) and A2(t) as a function of Δre f f

is depicted in Fig. 2. The used scanning range is 26.32 -
30.48 GHz, equivalent to cut-off densities 0.86 × 1019 -
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Fig. 1 Time evolution of the average electron density n̄e(t), ECH
and NBI signals (a.u.), electron density fluctuation am-
plitude signals A1(t) as measured by the two-channel O-
mode reflectometer system and the spectrogram of A1(t)
in an ECH discharge (#76025).

Fig. 2 Cross-correlation between the amplitudes of electron
density fluctuations A1(t) and A2(t) as a function of the ef-
fective distance between the cut-off layers Δre f f as mea-
sured in low-density (n̄e = 1.0 × 1019 m−3) ECH dis-
charges with three different magnetic field bumpiness
configurations (i.e. low, medium and high). Exponential
fitting functions are used.

1.19 × 1019 m−3. The lowest frequency and cut-off den-
sity correspond to the fixed-frequency reflectometer. The
cut-off radii ρ1,2 are calculated using an electron density
profile ne(ρ) obtained with a Thomson scattering diagnos-
tic, with ρ = r/a the normalized minor radius. For the
used scanning range of frequencies, ρ = 0.67 - 0.91, which
is converted to the minor radius r[mm] via r = ρa, with
a[mm] the position of the last closed magnetic flux surface.
The same approach was used in a series of high-density
NBI discharges (n̄e = 3.0 × 1019 m−3) with High Inten-
sity Gas Puffing (HIGP) and pellet injection in the medium
bumpiness configuration, resulting in Fig. 3 (used carrier
frequency scanning range: 26.32 - 34.29 GHz, cut-off den-
sity 0.86×1019 - 1.46×1019 m−3, ρ = 0.70 - 0.88). Due to a
steep density profile, the cut-off positions are located at the
edge regions in both the ECH and NBI plasmas. The 1/e

Fig. 3 Cross-correlation between the amplitudes of electron
density fluctuations A1(t) and A2(t) as a function of the
effective distance between the cut-off layers Δre f f as
measured in a high-density (n̄e = 3.0 × 1019 m−3) NBI
discharge with HIGP and pellet injection with medium
bumpiness configuration. An exponential fitting function
is used.

cross-correlation level is represented by a black horizontal
line in both figures.

The experimental results show that Lr is around 1.4 ±
0.7 mm in three different magnetic field bumpiness config-
urations (i.e. low, medium and high) for the low-density
ECH discharges. In high-density NBI discharges with
HIGP and pellet injection, Lr is found to be around 1 ±
0.2 mm. For comparison: the ion Larmor radius ρi ≈ 2 -
3 mm. As a future outlook, more data should be taken at
the range of Δre f f < 2 mm for a more accurate estimation
of Lr. Furthermore, Lr could be explored in improved con-
finement discharges to check whether a relation between
confinement and turbulence exists.
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