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A calculation method is presented for the trajectory of a horizontally injected spherical laser fusion energy
target in a reactor filled with residual gas. To evaluate the gas resistance and the placement error of the position
measurement unit (PMU) set along the injection path, a test injection is successively made two times and the
target positions in flight are measured by PMUs. Two unknown system parameters, gas resistance and placement
error, are determined by solving an equation system. After determining the system parameters, the arrival position
and arrival time of the newly injected fusion target at the reactor center can be calculated by simple arithmetic
with the time data and position data of the injected target in flight.

c© 2019 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: trajectory calculation, laser fusion energy target, Arago spot, Poisson spot, position measurement
unit, placement error, gas resistance

DOI: 10.1585/pfr.14.3405164

1. Introduction
A spherical fuel target is injected into the reactor

chamber of a direct drive laser fusion energy reactor and
the position and time of the injected target in flight are
measured. However, the trajectory must be calculated in a
few milliseconds to predict the arrival position and arrival
time of the target at the reactor center. If the trajectory of
the target is not controlled electrostatically [1] or magneti-
cally [2], the focal point of the laser beam must be moved
to the arrival position. Furthermore, the engagement error
of the laser beam and the target at the main shot must be
lower than 20 µm [3]. This criterion is based on a tolerable
non-uniformity of the irradiation.

To meet the criterion of the engagement error, the
error of the position measurement of the flying target as
well as the calculation error must be lowered by an order
of magnitude. Moreover, the position measurement units
(PMU) are set along the target path [4, 5]. These PMUs
measure the local coordinates of the flying target in each
PMU and the time of the measurement, (x, y, z, t). If the
placement errors of the PMUs are eliminated, the arrival
position and arrival time of the target at the reactor center
can easily be calculated.

In actual situations, two difficulties exist in the trajec-
tory calculation. First, the placement error of PMU cannot
be controlled. Besides, thermal expansion as well as ther-
mal and mechanical stress of the structural materials in the
operation phase of the reactor causes additional placement
errors. For example, as the coefficient of linear thermal
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expansion of HT-9 is 11.8× 10−6 K−1 at 400◦C [6], a tem-
perature increase of 10 K causes 1.18-mm linear expansion
of the reactor of 10-m diameter. Thermal expansion of the
building and earth tide [7] can be the cause of the place-
ment error. Second, the residual gas in the reactor causes a
frictional force on the injected target. The frictional force
is a complex function of the radius of a spherical target,
target velocity, and gas parameters. It is also difficult to
estimate the friction term in the equation of the target mo-
tion.

In this paper, we propose a procedure for the trajec-
tory calculation of an injected target in a reactor filled with
residual gas. The procedure uses only the position and the
time data of the injected target in the PMU. The setting and
mechanism of PMU are described in Sec. 2. The idea of the
procedure of the trajectory calculation of the target in vac-
uum is discussed in Sec. 3. The procedure is extended for
the case where residual gas exists in Sec. 4. Generalization
of equation of motion is shown in Sec. 5 and conclusion is
given in Sec. 6.

2. Setting and Mechanism of PMU
In a laser fusion reactor, the reactor center must be de-

fined optically. Ideally, the reactor center is the position
where all the laser beams arrive at the same time. Figure 1
(a) shows that all the laser pulses, represented by the tips
of the arrows, arrive at the center of the reactor at the same
time. The target is injected to pass through the reactor cen-
ter. If the injected target deviates from the ideal trajectory
and does not pass through the center, then the target tra-
jectory i.e. arrival time and arrival position at the reactor
center plane where the target must be shot must be calcu-
lated. Based on the calculation, each laser beam must be

c© 2019 The Japan Society of Plasma
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Fig. 1 Center (red point), shot region (broken circle) and reactor
central region (red circle), (a) ideal case (b) practical case.

Fig. 2 Setting of PMU (broken rectangles). Red box represents
the region of orthogonal irradiation.

moved to the arrival position. If the tolerance of the laser
irradiation time on the target is less than 0.05 ns, the tar-
get must pass through a sphere of 15-mm diameter placed
at the center, represented by the broken circle in Fig. 1 (a),
and must be shot in this spherical region (shot region).

Practically, because of the placement errors of the op-
tical elements, the arrival time of each laser beams varies
and the tips of the arrows are distributed in a small sphere
(reactor central region) represented by the red circle as
shown in Fig. 1 (b). Thus, an ideal center of the reactor
does not exist. However, a global coordinate system must
be defined to calculate the trajectory. It is natural to set
the origin of the global coordinate system in this reactor
central region. A PMU is placed to locate the origin of
the local XYZ coordinate system within the reactor central
region. Moreover, the origin of the local XYZ coordinate
system of this PMU is defined as the origin of the global
XYZ coordinate system. By this definition, the placement
error of this PMU is automatically eliminated when the tar-
get trajectory in the global XYZ system is calculated.

Let us consider the case where three PMU are set
along the target path as shown in Fig. 2. Target flies in the
vacuum tube and goes into the reactor chamber filled with
residual gas when the shutter opens. The broken rectangles
represent PMUs. If the flying target crosses the ray of light
monitored by the optical sensor in the PMU, a trigger sig-

Fig. 3 Arago spot in the shadow.

Fig. 4 Arago spot in the shadow. F, focal point (a) convergent
beam illumination (b) divergent beam illumination.

nal is emitted to the orthogonal (X and Y directions) pulsed
laser system to irradiate the target in the central part of the
PMU represented by the red box in Fig. 2. The XYZ coor-
dinate system is introduced to the local coordinate system
in all the PMUs and the global coordinate system as shown
in Fig. 2. The corresponding axes are parallel.

Furthermore, a position measurement method using
Arago spot is employed in the PMU. The position mea-
surement method was proposed by Petzoldt et al. [8]. The
Arago spot, also known as the Poisson spot, is a tiny bright
spot that appears at the central portion of the geometrical
shadow of the spherical object as shown in Fig. 3. This
is because the diffracted laser waves from the edge of the
sphere interfere constructively on the central axis of the
sphere.

The accuracy of the position measurement method us-
ing Arago spot is less than 0.3 µm for a stationary spher-
ical object [9]. However, a pulsed laser irradiation with
a duration less than 10 ns enables us to measure the po-
sition of the injected target of 100 m/s within a measure-
ment accuracy of 1 µm. This value satisfies the criterion of
the position measurement error of the flying target. Thus,
an orthogonal laser irradiation on the target enables 3-
dimensional position measurement [4, 5]. Moreover, im-
age compression using cylindrical lens can convert a 2D
Arago spot image into a 1D image [5,10]. This techniques
reduces the amount of image data and enables real-time
data processing for trajectory calculation.

Not only a parallel illumination but also convergent
and divergent illuminations can give Arago spot in the
shadow of the spherical target as shown in Fig. 4. The
center of the spherical target, focal point F of the laser
beam, and the Arago spot lie on a line [11]. If the spher-
ical target is irradiated by a convergent or divergent laser
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beam, the shadow is magnified and the Arago spot of the
spherical target can easily be observed at a large distance,
thereby enabling the position measurement of the flying
target from outside the reactor [4, 5].

The cross-section of the PMU is shown in Fig. 5. The
procedure to obtain the local coordinate of the target in a
PMU is as follows: First, the directions of the pulsed or-
thogonal divergent laser beams are calibrated in the PMU
without target. Spherical objects (S1 and S2) and mark
points (PF1 and PF2) are placed to cross two base lines
(S1PF1 and S2PF2) at a designated point. In the case of
a PMU at the reactor center, the designated point must
be located in the reactor central region of 2-mm diameter.
The cross point of two lines, S1PF1 and S2PF2, defines the
origin, Olocal, of the local coordinate system of the PMU.
Moreover, the position of Olocal is defined as the position of
PMU. Lines S1PF1 and S2PF2 define the x-axis and the y-
axis, respectively. Two spherical objects, S1 and S2, placed
outside of the reactor windows are then irradiated by the
laser beams. To generate the Arago spot at PF1 and PF2,
the focal points of Laser1 and Laser2, F1 and F2, must be
adequately adjusted (calibrated).

Consider that the target T is injected in the z-direction
and irradiated by the lasers. Two Arago spots appear at P1

and P2. The cross point of lines F1P1 and F2P2 determines
the position of the target T in Fig. 5. Therefore, we obtain
the local coordinate of the target (x, y)local at laser irradia-
tion. If the focal point moves from F1 to F′1, then the Arago
spot of spherical object S1 moves from PF1 to P′F1. We can
monitor the movement of the focal point in the operation
phase and then calibrate the position coordinate.

In a 3-dimensional case, two Arago spots, P1 and P2,
appear in the plane parallel to the YZ plane and other plane

Fig. 5 Cross-section of PMU using Arago spot and pulsed or-
thogonal divergent laser beam. F1 and F2 indicate the fo-
cal points of Laser1 and Laser2, respectively; T indicates
spherical target, and S1 and S2 indicate spherical objects.

parallel to the XZ plane, respectively. We obtain a 3-
dimensional local coordinate of the target (x, y, z)local at
laser irradiation.

We defined the position of PMU as the cross point of
two lines in Fig. 5. These lines were defined by spherical
objects (S1 and S2) and mark points (PF1 and PF2). If these
physical parts of the PMU are separated from the laser fu-
sion reactor chamber and reactor structure materials which
can be deformed, then the stress distortion and thermal ex-
pansion of the reactor chamber do not affect the position of
the PMU.

3. Target Trajectory Calculation in
Vacuum
We first consider the case where a test target is injected

into vacuum under gravity, to evaluate the placement error
of PMU. The analysis in this section can be applied to the
injection module test in a dry wall chamber [12] and to the
case of HIBALL-II [13] where high-vacuum is required.
Figure 6 shows three PMUs and the trajectory of the test
target which moves to the z-direction. For simplicity, we
consider the case where three PMUs are expected to be
placed along 5-m injection path with 2.5-m interval.

We set Olocal of PMU3 within the reactor central region
and define it as the origin, Oglobal, of the global coordinate
system (0, 0, 0) i.e. the reactor center. The placement er-
ror of PMU3 is automatically eliminated for the trajectory
calculation in this global coordinate system. Meanwhile,
there are no material parts of PMUs in the reactor chamber.
As shown in Fig. 5, the remote laser (Arago spot) measure-
ments of the position of the injected target are performed.

The other PMUs are placed along the target path on
a line. We define that the line between the origin of the
global coordinate system (0, 0, 0) and the local origin of
the most distant PMU as the z-axis. This procedure means
that the x- and y-components of the placement errors of the
most distant PMU, PMU1, are automatically eliminated. In
this section, we also assume that the z-component of the
placement error is eliminated.

A remaining PMU, PMU2, has its own unknown

Fig. 6 PMU and test target trajectory.
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Table 1 Local coordinate and global coordinate.

Point Local coordinate Global coordinate

P1 (dx1, dy1, dz1) (dx1, dy1, −5 + dz1)

P2 (dx2, dy2, dz2) (dx2 + ΔX, dy2 + ΔY , −2.5 + dz2 + ΔZ)

P3 (dx3, dy3, dz3) (dx3, dy3, dz3)

placement error which must be evaluated to calculate the
trajectory of the injected target. First, we evaluate this
placement error in the global coordinate system.

The local origin of each PMU, Olocal, represented as
crosses in the center of the boxes, are (0, 0, −5), (ΔX, ΔY ,
−2.5 + ΔZ), (0, 0, 0) in the global coordinate, respectively.
Here ΔX, ΔY , and ΔZ are unknown placement errors of the
second PMU. The trajectory of the test target is plotted on
a solid curve (parabolic curve) as shown in Fig. 6. When
the test target is detected in the PMU (solid box), the target
is irradiated by an orthogonal pulsed laser beams at points
P1, P2, and P3. The local coordinates of the points and the
irradiation time measured in PMU are (dx1, dy1, dz1, 0),
(dx2, dy2, dz2, T2), and (dx3, dy3, dz3, T3), where dxi, dyi,
dzi (i = 1, 2, 3) are the local coordinates of the target in the
i-th PMU. We assume that |dxi| and |dzi| are smaller than
1 mm. The time variable can be a global variable by sup-
plying common clock pulses to each PMU. The local co-
ordinates can be transformed into global coordinates (dx1,
dy1, −5+dz1, 0), (dx2+ΔX, dy2+ΔY , −2.5+dz2+ΔZ, T2),
and (dx3, dy3, dz3, T3) as shown in Table 1 if the placement
errors ΔX, ΔY , and ΔZ are determined.

The equation of motion for the z-direction is:

Fz = m
dvz
dt
= 0, (1)

where m is the mass of the target. The z-component of the
velocity and the position of the test target are:

vz(t) = vz0, (2)

z(t) = vz0t + (−5 + dz1), (3)

where vz0 is the z-component of the target velocity at t = 0.
Similar equation holds for the x-direction. The displace-
ment of the z-direction Lz2 (= z(T2) − z(0)) and Lz3 (=
z(T3) − z(0)) are proportional to the flight time T2 and T3,
we have:

Lz3

Lz2
=

(5 + dz3 − dz1)
(2.5 + ΔZ + dz2 − dz1)

=
vz0T3

vz0T2
. (4)

We obtain an equation for ΔZ. Here, an unknown pa-
rameter i.e. placement error ΔZ, is determined by solving
(4) to obtain:

ΔZ =
T2(5 + dz3 − dz1) − T3(2.5 + dz2 − dz1)

T3
. (5)

Similarly, the ratio of the displacement of the x-directions
is:

Lx3

Lx2
=

(dx3 − dx1)
(ΔX + dx2 − dx1)

=
vx0T3

vx0T2
. (6)

Fig. 7 Trajectory of newly injected target.

The parameter ΔX is determined by solving (6) to give:

ΔX =
T2(dx3 − dx1) − T3(dx2 − dx1)

T3
. (7)

The equation of motion for the y-direction is:

Fy = m
dvy
dt
= −mg, (8)

where g is the gravitational acceleration. The y-component
of the velocity and the position of the test target are:

vy(t) = −gt + vy0, (9)

y(t) = −g
2

t2 + vy0t + dy1, (10)

where vy0 is the y-component of the target velocity at t = 0.
The displacement of the y-direction Ly2 (= y(T2)−y(0)) and
Ly3 (= y(T3) − y(0)) are:

Ly3 = −
gT 2

3

2
+ vy0T3 = dy3 − dy1, (11)

Ly2 = −
gT 2

2

2
+ vy0T2 = ΔY + dy2 − dy1. (12)

The y-component of the initial velocity vy0 and the place-
ment error ΔY are:

vy0 =
g

2
T3 +

dy3 − dy1

T3
, (13)

ΔY =
g

2
T2(T3 − T2)

+
T2(dy3 − dy1) − T3(dy2 − dy1)

T3
. (14)

After determining the placement errors of the second
PMU (ΔX, ΔY , ΔZ), we can calculate the trajectory of the
newly injected target. If a target is newly injected, the data
obtained in the PMUs are (dx′′1 , dy′′1 , dz′′1 , 0) and (dx′′2 , dy′′2 ,
dz′′2 , T ′′2 ). We must calculate the arrival time and arrival
position (dx′′3 , dy′′3 , dz′′3 = 0, TA) which is indicated by a
red point in Fig. 7.

The local coordinates can then be transformed into
global coordinates (dx′′1 , dy′′1 , −5 + dz′′1 , 0) and (dx′′2 + ΔX,
dy′′2 + ΔY , −2.5 + dz′′2 + ΔZ, T ′′2 ) as shown in Table 2.
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Table 2 Local coordinate and global coordinate.

Point Local coordinate Global coordinate

P′′1 (dx′′1 , dy′′1 , dz′′1 ) (dx′′1 , dy′′1 , −5 + dz′′1 )

P′′2 (dx′′2 , dy′′2 , dz′′2 ) (dx′′2 + ΔX, dy′′2 + ΔY , −2.5 + dz′′2 + ΔZ)

The displacement of the z-direction of the target, Lz2′′

(= z(T ′′2 ) − z(0)) and LzA (= z(TA) − z(0) = −z(0)), are pro-
portional to the flight time T ′′2 and the arrival time TA:

LzA

Lz2′′
=

(5 − dz′′1 )

(2.5 + ΔZ + dz′′2 − dz′′1 )
=
v′′z0TA

v′′z0T ′′2
, (15)

where v′′z0 is the z-component of the initial velocity at t = 0.
Thus:

v′′z0 =
(2.5 + ΔZ + dz′′2 − dz′′1 )

T ′′2
. (16)

Similarity, we have:

v′′x0 =
(ΔX + dx′′2 − dx′′1 )

T ′′2
, (17)

v′′y0 =
g

2
T ′′2 +

(ΔY + dy′′2 − dy′′1 )

T ′′2
. (18)

From (15), the arrival time of the target TA at z = 0 (shot
plane) is:

TA =
(5 − dz′′1 )

v′′z0

=
T ′′2 (5 − dz′′1 )

(2.5 + ΔZ + dz′′2 − dz′′1 )
. (19)

The arrival positions of the target at the shot (t = TA) are:

dz′′3 = v
′′
z0TA + (−5 + dz′′1 ) = 0, (20)

dx′′3 = v
′′
x0TA + dx′′1 =

TA(ΔX + dx′′2 − dx′′1 )

T ′′2
+ dx′′1

=
(5 − dz′′1 )(ΔX + dx′′2 − dx′′1 )

(2.5 + ΔZ + dz′′2 − dz′′1 )
+ dx′′1 , (21)

dy′′3 = −
g

2
T 2

A + v
′′
y0TA + dy′′1

=
gTA(T ′′2 − TA)

2

+
(5 − dz′′1 )(ΔY + dy′′2 − dy′′1 )

(2.5 + ΔZ + dz′′2 − dz′′1 )
+ dy′′1 . (22)

If PMU2 approaches PMU1, then the trajectory is de-
termined earlier. In practice, the position measurement er-
ror of the target exists and causes an error in the arrival
time and arrival position. Therefore, the allowable calcu-
lation error restricts the minimum distance between PMU1

and PMU2.

4. Target Trajectory Calculation in
Residual Gas
We consider the case where the target is injected into

gas under gravity. In the laser fusion reactor concepts,
liquid-metal wall is proposed to breed tritium and to pro-
tect the reactor wall against pulsed X-ray and plasma of

a microexplosion [14]. The evaporation and condensation
of the liquid metal occurs in the reactor chamber. Mean-
while, the vapor of the liquid metal exists as a residual gas.
This residual gas acts as a frictional force on the target mo-
tion [15–17] and causes delay in the arrival time of the tar-
get [18,19]. Although the temperature and number density
of the residual gas changes instantaneously with time af-
ter microexplosion, repetitive target injection is scheduled
after steady state of the gas is realized in the reactor. The
temperature and number density of the steady-state resid-
ual gas are functions of the reactor wall temperature in the
long term. In a reactor operation phase, the temperature
of the reactor wall varies very slowly with time. Hence,
we assume that the condition of the residual gas i.e. the
temperature and number density do not change in each in-
jection.

The measured data obtained in the PMUs are (dx1,
dy1, dz1, 0), (dx2, dy2, dz2, T2), and (dx3, dy3, dz3, T3),
where dxi, dyi, dzi (i = 1, 2, 3) are the local coordinates
of the target in the i-th PMU, respectively. It was found
experimentally that the frictional force for a small veloc-
ity is proportional to the velocity [20]. In this case, the
z-component of the equation of target motion is:

Fz = m
dvz
dt
= −kvz, (23)

where k is a gas friction coefficient. Gas friction coefficient
is a function of temperature, number density of the residual
gas, and radius of the target [15–17]. The velocity of the
target is:

vz(t) = vz0 exp

(
−kt

m

)
= vz0 exp(−Bt), (24)

where B = k/m and vz0 is the z-component of the initial
velocity of the target at t = 0. Integrating (24), the position
of the target is:

z(t) =
vz0

B
[1 − exp(−Bt)] + (−5 + dz1). (25)

The flight distance Lz2 (= z(T2) − z(0)) and Lz3 (=
z(T3) − z(0)) are functions of the flight time T2 and T3:

Lz3 = 5 + dz3 − dz1 =
vz0

B
[1 − exp(−BT3)], (26)

Lz2 = 2.5 + ΔZ + dz2 − dz1

=
vz0

B
[1 − exp(−BT2)]. (27)

However, two unknown parameters, ΔZ and B, must
be determined. If we make two independent test injections
(a and b), we obtain:

Lz3a

Lz2a
=

(5 + dz3a − dz1a)
(2.5 + ΔZ + dz2a − dz1a)

=
1 − exp(−BT3a)
1 − exp(−BT2a)

, (28)

Lz3b

Lz2b
=

(5 + dz3b − dz1b)
(2.5 + ΔZ + dz2b − dz1b)

=
1 − exp(−BT3b)
1 − exp(−BT2b)

. (29)
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From these two equations, we can determine the two un-
known parameters simultaneously.

Similarly, ΔX is obtained from following equation:

(dx3 − dx1)
(ΔX + dx2 − dx1)

=
1 − exp(−BT3)
1 − exp(−BT2)

. (30)

We have:

ΔX =
1 − exp(−BT2)
1 − exp(−BT3)

(dx3 − dx1) − (dx2 − dx1).

(31)

The y-component of the equation of motion, velocity,
and position of the target are:

Fy = m
dvy
dt
= −mg − kvy, (32)

vy(t) =
(
vy0 +

mg
k

)
exp

(
−kt

m

)
− mg

k

=

(
vy0 +

g

B

)
exp(−Bt) − g

B
, (33)

y(t) =
(
g

B2
+
vy0

B

)
[1 − exp(−Bt)] − g

B
t + dy1. (34)

Here vy0 is the y-component of the initial velocity of the
target at t = 0. The displacement of the y-direction of the
target, Ly2 (= y(T2) − y(0)) and Ly3 (= y(T3) − y(0)), are
functions of the flight time T2 and T3. Thus:

Ly3 =
(
g

B2
+
vy0

B

)
[1 − exp(−BT3)] − g

B
T3

= dy3 − dy1, (35)

Ly2 =
(
g

B2
+
vy0

B

)
[1 − exp(−BT2)] − g

B
T2

= ΔY + dy2 − dy1. (36)

We have:

vy0 =
gT3 + B(dy3 − dy1)

1 − exp(−BT3)
− g

B
, (37)

ΔY =
1 − exp(−BT2)
1 − exp(−BT3)

· g
B

T3 − gBT2

+
1 − exp(−BT2)
1 − exp(−BT3)

(dy3 − dy1)

− (dy2 − dy1). (38)

After determining ΔX, ΔY , ΔZ, and B, we can calcu-
late the trajectory of the newly injected target. If a target is
newly injected, the local coordinates of the injected target
are transformed into global coordinates (dx′′1 , dy′′1 , −5+dz′′1 ,
0) and (dx′′2 + ΔX, dy′′2 + ΔY , −2.5 + dz′′2 + ΔZ, T ′′2 ). The
displacement of z-direction of the target is:

z(T ′′2 ) − z(0) = (2.5 + ΔZ + dz′′2 − dz′′1 )

=
v′′z0[1 − exp(−BT ′′2 )]

B
. (39)

We can determine the initial velocities as:

v′′z0 =
B(2.5 + ΔZ + dz′′2 − dz′′1 )

1 − exp(−BT ′′2 )
, (40)

v′′x0 =
B(ΔX + dx′′2 − dx′′1 )

1 − exp(−BT ′′2 )
, (41)

v′′y0 =
B(ΔY + dy′′2 − dy′′1 ) + gT ′′2

1 − exp(−BT ′′2 )
− g

B
. (42)

The arrival time TA of the target at the shot is derived from
following equation:

5 − dz′′1 =
v′′z0

B
[1 − exp(−BTA)]. (43)

From this equation, we can determine the arrival time of
the target TA at z = 0 (shot plane) as:

TA = − 1
B

log

[−B
v′′z0

(5 − dz′′1 ) + 1

]
. (44)

The arrival positions of the target are:

dz′′3 =
v′′z0

B
[1 − exp(−BTA)] + (−5 + dz′′1 ) = 0, (45)

dx′′3 =
v′′x0

B
[1 − exp(−BTA)] + dx′′1

=
v′′x0

v′′z0

v′′z0

B
[1 − exp(−BTA)] + dx′′1

=
(5 − dz′′1 )(ΔX + dx′′2 − dx′′1 )

(2.5 + ΔZ + dz′′2 − dz′′1 )
+ dx′′1 , (46)

dy′′3 =
(5 − dz′′1 )(ΔY + dy′′2 − dy′′1 )

(2.5 + ΔZ + dz′′2 − dz′′1 )
+ dy′′1

+
1 − exp(−BTA)
1 − exp(−BT ′′2 )

· gT
′′
2

B
− gTA

B
. (47)

We can extend results obtained in this section to the
generalized case where the number N of PMUs is larger
than 3. The placement errors of N-2 PMUs and gas friction
coefficient are evaluated by two test injections experimen-
tally as well.

5. Generalization of Equation of Mo-
tion
We assumed that vz0 is 100 m/s and radius of the re-

actor is 5 m. In order to pass through the shot region of a
15-mm diameter sphere, |vx0| and |vy0|must be smaller than
0.15 m/s. As vz0 is much larger than vx0 and vy0, in some
cases the friction term in the equation of motion may not
be the same function form. Generally, a smooth function of
velocity v such as frictional force is approximated locally
by a line as −k(v)v − S(v). Here, k(v) and S(v) are newly
introduced constant parameters that can be determined ex-
perimentally. The equation of motion for the z-direction is
not (23) but a general form, given by:

Fz = m
dvz
dt
= −S − kvz. (48)

A similar analysis for (32) can be applied to (48). The
velocity and position of the injected target are:

vz(t) =
(
vz0 +

S
k

)
exp

(
−kt

m

)
− S

k
(49)

= (vz0 + D) exp(−Bt) − D,

z(t) =
1
B

(vz0 + D)[1 − exp(−Bt)]

− Dt − 5 + dz1, (50)
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where D = S/k, B = k/m and vz0 is the z-component of the
initial velocity of the target at t = 0. The flight distances,
Lz2 and Lz3, are:

Lz2 = 2.5 + ΔZ + dz2 − dz1

=
(vz0 + D)

B
[1 − exp(−BT2)] − DT2, (51)

Lz3 = 5 + dz3 − dz1

=
(vz0 + D)

B
[1 − exp(−BT3)] − DT3. (52)

Three unknown parameters, ΔZ, B(= k/m), and D(=
S/k) are determined simultaneously by three equations
from three independent injections (a, b and c) as:

(5 + dz3a − dz1a) + DT3a

(2.5 + ΔZ + dz2a − dz1a) + DT2a

=
1 − exp(−BT3a)
1 − exp(−BT2a)

, (53)

(5 + dz3b − dz1b) + DT3b

(2.5 + ΔZ + dz2b − dz1b) + DT2b

=
1 − exp(−BT3b)
1 − exp(−BT2b)

, (54)

(5 + dz3c − dz1c) + DT3c

(2.5 + ΔZ + dz2c − dz1c) + DT2c

=
1 − exp(−BT3c)
1 − exp(−BT2c)

. (55)

After determining the unknown parameters, the initial
velocity of the newly injected target can be determined.
The flight distance is:

z(T ′′2 ) − z(0) = (2.5 + ΔZ + dz′′2 − dz′′1 )

=
(v′′z0 + D)[1 − exp(−BT ′′2 )]

B
− DT ′′2 .

(56)

Thus, the initial velocity is:

v′′z0 =
B(2.5 + ΔZ + dz′′2 − dz′′1 + DT ′′2 )

1 − exp(−BT ′′2 )
− D. (57)

The arrival time, TA, is obtained by solving the equation:

5 − dz′′1 =
(v′′z0 + D)

B
[1 − exp(−BTA)] − DTA. (58)

The analysis in this section can be applied to the following
examples.

Consider the case where the z−axis of the global coor-
dinate makes an angle θ with the horizontal. The equation
of motion for the z-direction is:

Fz = m
dvz
dt
= −S − mg sin θ − kvz

= −S 1 − kvz. (59)

An adjusting constant parameter S 1(= S + mg sin θ) is in-
troduced. The effect of the acceleration can be included
(treated) in the term S 1. This parameter can be also deter-

mined experimentally. A similar analysis for (48) can be
applied to (59).

Consider again the case where the steady flow of a gas
exists in the reactor chamber because of the pumping. The
friction term is then represented as:

Fi = −ki(vi − vwind(i)) = kivwind(i) − kivi

= −S i − kivi, (i = x, y, z) (60)

where vwind(i) is the velocity of the steady flow of the resid-
ual gas, S i(= −kivwind(i)) is a newly introduced constant
parameter which can be determined experimentally.

6. Conclusion
The setting and mechanism of PMU and its calibra-

tion method were presented. A calculation method was
also presented for the trajectory of the horizontally injected
spherical laser fusion energy target. In a residual gas, the
placement error of PMU and gas friction coefficient were
experimentally evaluated by two test injections. After de-
termining the placement error and the gas friction coef-
ficient, the arrival position and arrival time of the newly
injected fusion target at the shot plane were calculated by
a simple algebraic arithmetic with the local coordinate and
time data in the PMU.
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