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Study of Spoof Plasmon Formed on Periodically Corrugated Metal
Surface Based on Cavity Resonance Method∗)
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We experimentally studied spoof plasmons developed on a metal cylinder with rectangular corrugations.
Cavity resonance method using vector network analyzer is employed to examine electromagnetic properties of
the spoof plasmon. The dispersion characteristics are obtained using resonance frequencies and can be recognized
as two regions: bounded and hybrid surface-wave regions. The bounded surface wave is formed near the upper
cutoff frequency, while the hybrid surface wave similar to a Sommerfeld wave is formed away from the upper
cutoff frequency. In addition to the dispersion characteristics, the reflectance of spoof plasmon at the corrugation
end is examined, based on quality factors of resonant modes.
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1. Introduction
Spoof plasmons are surface waves excited along

metallic corrugated surfaces and are considered to be the
microwave and terahertz equivalent of optical surface plas-
mon polaritons for metals. Metamaterials like gratings or
corrugated walls have surfaces with sub-wavelength struc-
tures, which form spoof plasmons [1]. Spoof plasmons are
now attracting attention in the terahertz application areas
such as coherent terahertz radiation sources, plasma heat-
ing and diagnostics, and material research. And the highly
confined guiding of spoof plasmon has been verified us-
ing a planar plasmonic metamaterial [2]. For a cylindrical
geometry, the boundary condition on the side ends of the
planar corrugation is replaced by an azimuthally periodic
condition in the cylindrical coordinate system, resulting
in axisymmetric and non-axisymmetric cylindrical spoof
plasmons [3]. Since the cylindrical spoof plasmons cling
to the corrugated cylinder and are reflected at the corruga-
tion ends, a resonator may be formed in the same way as
in a conventional waveguide cavity.

The spoof-plasmon-based surface-wave resonator en-
ables intense generations in microwave and terahertz wave
regions [4–6]. End reflections play an important role in the
resonator formation. They also affect both starting condi-
tions and saturation effects of the microwave source [7, 8].
Hence, it is very important to understand such properties as
the reflectance of spoof plasmons for future applications.
However, it is very difficult to analyze the reflectance in
real devices even using computer simulation [9, 10].
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In this paper, a spoof plasmon on a corrugated cylin-
der is studied. There is another kind of cylindrical sur-
face wave caused by surface plasmons, i.e., Sommerfeld
wave, the dispersion characteristics of which are fixed by
the physical properties of the metal. On the other hand,
spoof plasmons due to the periodic structure can have an
arbitrary dispersion and may be very useful for generation
and guiding of electromagnetic waves up to the terahertz
region. In practical situations, the extent of metamaterial
is finite. Reflections from ends quantize the spoof plasmon
into discrete resonant modes. These discrete modes are ex-
amined by applying a cavity resonance method, in which
microwave reflection, transmission, and input impedance
are measured as functions of frequency by a vector net-
work analyzer (VNA) [9–12]. The dispersion characteris-
tics of spoof plasmons on the corrugated surface are ex-
amined by comparing the numerical and experimental fre-
quencies. And the reflection coefficients of spoof plasmons
at the corrugation end are examined using the quality fac-
tors of resonant modes.

2. Cavity Resonance Method using
VNA
The experimental set-up is shown in Fig. 1. A VNA

(Anritsu 37269D) is employed to measure the scattering
parameters: the reflections from the structure to port 1
(S11) and port 2 (S22), as well as the transmissions through
the structure from port 1 to port 2 (S12) and vice versa
(S21). A needle antenna is employed to excite the spoof
plasmons. However, the coupling of the needle antenna to
the spoof plasmon is too weak to excite the surface-wave
resonator. We use a combination of a reflector and the nee-
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Fig. 1 Schematic of the experimental set-up for scattering pa-
rameters measurement using VNA.

Fig. 2 Forward and backward spoof plasmons in a finite length
corrugated structure are represented by their wavenum-
bers k+z , and k−z , respectively. The effects of reflection are
taken into account using the reflection coefficients of R1

and R2 at each end of the structure.

dle shown in Fig. 1, where the surface-plasmon polariton is
excited on the reflector surface and interacts with the spoof
plasmon on the corrugation [12].

Figure 2 shows how a resonance is formed by the
spoof plasmon. Forward spoof plasmon k+z coming from
the left end of the structure reflects with a reflection coeffi-
cient R2 at the structure’s right end. The reflected spoof
plasmon k−z propagates to the left end and reflects with
a reflection coefficient R1. Forward and backward spoof
plasmons form an axil resonator like in a waveguide cav-
ity [9, 10, 13]. The reflection coefficient for one round trip
in the structure is R = R1R2.

The corrugation is made of aluminum alloy A5052
and the parameters are the average corrugation radius
R0 = 13 mm, corrugation amplitude h = 1 mm, corruga-
tion width d = 1.5 mm and periodic corrugation length
z0 = 3.0 mm. The cylinder has a number of period N = 10,
and the length of the cylinder is L = 10z0. A closed cav-
ity is formed when a finite-length corrugation is shorted
at both ends by the reflectors like in Fig. 1. In general,
the closed cavity having N number of periods will support
axial resonant modes at wavenumber kz = (π/z0)(n/N),
where n ranges from 0 to N [9]. When one end of a corru-
gated resonator is left open, this cavity is referred to as an
open cavity [10]. In contrast to the closed cavity, the open
cavity supports axial resonant modes with “half-integer”
spacing, namely at kz = (π/z0)(n + 1/2)/N with n ranging
from 0 to N − 1.

Fig. 3 (a) Reflection (S11) and transmission (S12) profiles of a
corrugated cylinder for the closed cavity. Red dotted
lines correspond to resonances. (b) Resonance frequen-
cies versus wavenumber for a spoof plasmon. The dashed
line represents the light line. See the text for the closed
and open circles.

Fig. 4 (a) Reflection (S11) and transmission (S12) profiles of a
corrugated cylinder for the open cavity. Red dotted lines
correspond to resonances. (b) Resonance frequencies
versus wavenumber for a spoof plasmon. The dashed line
represents the light line. See the text for the closed cir-
cles.

The resonances appear as spikes where the reflection
decreases while the transmission increases. The measured
S11 and S12 are shown in Figs. 3 and 4. The set-up for Fig. 3
has a reflector on both sides and corresponds to the closed
cavity. For Fig. 4, the reflector of the excitation antenna on
port-2 side is removed with the needle antenna remaining
and the set-up becomes an open cavity. Experimentally
observed resonant spikes in S 11 and S 12 are depicted by
circles in Figs. 3 (b) and 4 (b) for corresponding axial res-
onant modes. The dispersion curves of the spoof plasmon
in these figures are derived numerically based on a mathe-
matical formulation for rectangular corrugations presented
in [12, 14].

For the closed cavity, seven resonances in the region
(I) of Fig. 3 (a) are plotted by closed circles at kzz0 =

4π/10, 5π/10, 6π/10, 7π/10, 8π/10, 9π/10 and 10π/10
in Fig. 3 (b). For the 10π/10 resonance, a very weak S 21

signal under −25 dB can be seen and no meaningful S 11

2406008-2



Plasma and Fusion Research: Regular Articles Volume 14, 2406008 (2019)

signal is observed. The spoof plasmon far from the up-
per cutoff frequency has a dispersion relation very close to
the light line and forms hybrid surface wave as pointed out
in Refs. [1, 12]. The hybrid surface wave is hard to dis-
tinguish from the “real” surface-plasmon polariton, which
is the Sommerfeld wave in our cylindrical geometry. The
axial resonant modes based on the Sommerfeld wave are
also examined by replacing the corrugated cylinder with a
straight one having the length of 30 mm and the diameter of
26 mm, corresponding to the parameters of the corrugated
cylinder. The resonances due to the Sommerfeld wave are
almost the same as those in region (II) of Fig. 3 (a). In this
case, the cavity length for resonators should be the distance
Lref between two end reflectors of Fig. 1, Lref = 34 mm in
our experiments. Their resonant wavenumbers are mπ/Lref

with integer m, plotted by open circles in Fig. 3 (a).
For the open cavity, six resonances are observed in

region (I), as shown in Fig. 4 (a). In Fig. 4 (b), these res-
onances are plotted at the corresponding wavenumber of
kzz0 = π(4 + 1/2)/10, π(5 + 1/2)/10, π(6 + 1/2)/10,
π(7+ 1/2)/10, π(8+ 1/2)/10, and π(9+ 1/2)/10. Theoret-
ical and experimental results agree reasonably well. Res-
onances in region (II) disappear in Fig. 4 (a), showing that
the end reflectance of the hybrid surface wave is too weak
to form resonators without reflectors.

3. Quality Factors and Reflectance of
Finite Length Corrugated Cylinder
We examine reflectance at the corrugation end based

on quality-factor measurement. There are three quality fac-
tors: the total quality factor QT , the ohmic quality factor
QΩ, and the diffractive quality factor Qd. The ohmic wall
loss in the cavity determines QΩ, and Qd depends on the ra-
diative power loss at the corrugation end and is closely re-
lated to the end reflectance of resonator. The three quality
factors are related the relationship as 1/QT = 1/QΩ+1/Qd.

The factor QT can be derived based on the well-known
half-power points’ method as

QT =
fr
Δ f
, (1)

where fr is the resonance frequency determined at the max-
imum magnitude of the transition while Δ f is frequency
difference between the half-power points (1/

√
2 points of

the maximum transmission magnitude). The Smith chart
is plotted in Fig. 5, where three loops for axial resonant
modes of 7π/10, 8π/10, and 9π/10 are presented. Cou-
plings between the resonator and the excitation antenna are
under-couplings.

The factor QΩ may be derived using the critical-points
method [11]. This method uses input-impedance Zi and
is useful even for our weak under-coupling cases. In
Fig. 6, two critical-points are defined as the points at which
the corresponding reactance is maximal ( f1) and mini-
mal ( f2); another two frequencies f3 and f4 are defined at

Fig. 5 The Smith chart for reflection S 22 of the closed cavity.
Loops denoted by 21, 43 and 65 are the 7π/10, 8π/10,
and 9π/10 axial modes, respectively.

Fig. 6 The input-impedance Zi locus in the vicinity of the 9π/10
resonance for the closed cavity.

the detuned crossover point, at which the corresponding
impedance is identical. By combining these four frequen-
cies, QΩ is evaluated as

QΩ =
f1 + f2

2| f1 − f2| |x|, (2)

where |x| is a function of f1, f2, f3, and f4, given by Eq. (12)
of Ref. [11]. This factor is called the modification factor of
the critical-point bandwidth and is around one. By using
the obtained QT and QΩ, Qd can be expressed as

Qd =
1

1
QT
− 1

QΩ

. (3)

The relationship between the reflection coefficient at the
structure end and Qd may be given as

R =

√
1 − α/Qd

1 + α/Qd
, and α =

ωL
vg
, (4)

where vg is the group velocity of the spoof plasmon [5, 9].
The quality factors and round-trip reflectance of the

9π/10 axial mode for the closed cavity are presented in
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Table 1 Quality factor and round trip-reflectance R.

Table 1. For the closed cavity, the round-trip reflectance R
becomes 94%, which corresponds to 97% for each R1 or
R2. For the open cavity, the π(9 + 1/2)/10 mode is very
close to the 9π/10 mode and the round-trip reflectance of
84% is obtained. Since the set-up on the port 1 side does
not change, R1 may be the same as 97%. Hence, the value
of R2 changes from 97% to 87% by removing the reflec-
tor. The end reflectance of the bounded surface wave is
so strong that resonators can be formed without the reflec-
tor at the corrugation end. On the other hand, resonator
formation by a hybrid wave requires artificial reflectors.

4. Discussion and Conclusion
The critical-points method is checked by applying it to

a straight waveguide resonator for which equations of QΩ
are derived theoretically [15]. We prepare the waveguide
made of aluminum alloy A5056 with a radius of 7 mm and
a length Ls of 90 mm. The experimental QΩ is about 3000
for the lowest TM01 resonant mode. The theoretical value
is obtained as 6300 with the A5056’s conductivity of 1.56
× 107 S/m. Agreement between the experimental and the-
oretical values is good when we use a surface roughness
factor of around 2. This factor depends on the surface con-
ditions such as fabrication and oxidation and cannot be de-
termined theoretically. A roughness factor of around 2 may
be reasonable considering that the same factor has been re-
ported for X-band corrugated waveguides [9, 13].

In Table 1, values of QΩ are on the order of hundreds
and much lower than those for cavities with a roughness
factor of 2 [9, 10, 13]. Our corrugations are fabricated
without any special treatment such as mirror-like finish
and the surface imperfections may reduce QΩ. The effects
of QΩ on the performance of spoof plasmon based devices
are still unclear and should be studied more definitely for

future applications.
In conclusion, by employing the cavity resonance

method with VNA, we examine the dispersion character-
istics and end reflectance of spoof plasmons formed on the
metal cylinder with rectangular corrugations. The disper-
sion curve can be recognized as two regions; region (I)
near the upper cutoff frequency and region (II) away from
the upper cutoff frequency. The bounded surface wave
is formed in region (I) and its end reflectance is strong
enough to form resonators without any artificial reflector.
On the other hand, the hybrid surface wave exists in re-
gion (II) and is similar to the Sommerfeld wave. Its end
reflectance is too weak to form resonators. In such cases,
formation of an axial resonator requires artificial reflectors
on both ends of corrugation. This paper presents a use-
ful method for examining the spoof plasmon, and may be
considerably useful for developing electromagnetic wave
sources and waveguiding systems based on period struc-
ture.
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